首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most quantitative traits in most populations exhibit heritable genetic variation. Lande proposed that high levels of heritable variation may be maintained by mutation in the face of stabilizing selection. Several analyses have appeared of two distinct models with n additive polygenic loci subject to mutation and stabilizing selection. Each is reviewed and a new analysis and model are presented. Lande and Fleming analyzed extensions of a model originally treated by Kimura which assumes a continuum of possible allelic effects at each locus. Latter and Bulmer analyzed a model with diallelic loci. The published analyses of these models lead to qualitatively different predictions concerning the dependence of the equilibrium genetic variance on the underlying biological parameters. A new asymptotic analysis of the Kimura model shows that the different predictions are not consequences of the number of alleles assumed but rather are attributable to assumptions concerning the relative magnitudes of per locus mutation rates, the phenotypic effects of mutation, and the intensity of selection. This conclusion is reinforced by analysis of a model with triallelic loci. None of the approximate analyses presented are mathematically rigorous. To quantify their accuracy and display the domains of validity for alternative approximations, numerically determined equilibria are presented. In addition, empirical estimates of mutation rates and selection intensity are reviewed, revealing weaknesses in both the data and its connection to the models. Although the mathematical results and underlying biological requirements of my analyses are quite different from those of Lande, the results do not refute his hypothesis that considerable additive genetic variance may be maintained by mutation-selection balance. However, I argue that the validity of this hypothesis can only be determined with additional data and mathematics.  相似文献   

2.
The evolution of genotypic mutation rates has been investigated in numerous theoretical and experimental studies. Mutations, however, occur not only when copying DNA, but also when building the phenotype, especially when translating and transcribing DNA to RNA and protein. Here we study the effect of such phenotypic mutations. We find a maximum phenotypic mutation rate, umax, that is compatible with maintaining a certain function of the organism. This may be called a phenotypic error threshold. In particular, we find a minimum phenotypic mutation rate, umin, with the property that there is (nearly) no selection pressure to reduce the rate of phenotypic mutations below this value. If there is a cost for lowering the phenotypic mutation rate, then umin is close to the optimum phenotypic mutation rate that maximizes the fitness of the organism. In our model, there is selective pressure to decrease the rate of genotypic mutations to zero, but to decrease the rate of phenotypic mutations only to a positive value. Despite its simplicity, our model can explain part of the huge difference between genotypic and phenotypic mutation rates that is observed in nature. The relevant data are summarized.  相似文献   

3.
The roles of natural selection and random genetic change in the punctuated phenotypic evolution of eight Miocene-Pliocene tropical American species of the cheilostome bryozoan Metrarabdotos are analyzed by quantitative genetic methods. Trait heritabilities and genetic covariances reconstructed by partitioning within- and among-colony phenotypic variance are similar to those previously obtained for living species of the cheilostome Stylopoma using breeding data. The hypothesis that differences in skeletal morphology between species of Metrarabdotos are entirely due to mutation and genetic drift cannot be rejected for reasonable rates of mutation maintained for periods brief enough to account for the geologically abrupt appearances of these species in the fossil record. Except for one pair of species, separated by the largest morphologic distance, directional selection acting alone would require unrealistically high rates of selective mortality to be maintained for these periods. Thus, directional selection is not strongly implicated in the divergence of Metrarabdotos species. Within species, rates of net phenotypic change are slow enough to require stabilizing selection, but mask large, relatively rapid fluctuations, all of which, however, can be attributed to chance departures from the mean phenotype by mutation and genetic drift, rather than to tracking environmental fluctuation by directional selection. The results are consistent with genetic models involving shifts between multiple adaptive peaks on which phenotypes remain more or less static through long-term stabilizing selection. Regardless of the degree to which directional selection may be involved in peak shifts, phenotypic differentiation is thus related to processes different than the pervasive stabilizing selection acting within species.  相似文献   

4.
Guillaume Martin 《Genetics》2014,197(1):237-255
Models relating phenotype space to fitness (phenotype–fitness landscapes) have seen important developments recently. They can roughly be divided into mechanistic models (e.g., metabolic networks) and more heuristic models like Fisher’s geometrical model. Each has its own drawbacks, but both yield testable predictions on how the context (genomic background or environment) affects the distribution of mutation effects on fitness and thus adaptation. Both have received some empirical validation. This article aims at bridging the gap between these approaches. A derivation of the Fisher model “from first principles” is proposed, where the basic assumptions emerge from a more general model, inspired by mechanistic networks. I start from a general phenotypic network relating unspecified phenotypic traits and fitness. A limited set of qualitative assumptions is then imposed, mostly corresponding to known features of phenotypic networks: a large set of traits is pleiotropically affected by mutations and determines a much smaller set of traits under optimizing selection. Otherwise, the model remains fairly general regarding the phenotypic processes involved or the distribution of mutation effects affecting the network. A statistical treatment and a local approximation close to a fitness optimum yield a landscape that is effectively the isotropic Fisher model or its extension with a single dominant phenotypic direction. The fit of the resulting alternative distributions is illustrated in an empirical data set. These results bear implications on the validity of Fisher’s model’s assumptions and on which features of mutation fitness effects may vary (or not) across genomic or environmental contexts.  相似文献   

5.
Using a phenotypic model, we show that significant heritable variation can be maintained in a population subjected to temporally fluctuating selection if only one sex is subject to selection. In fact, more variation is maintained with sex-limited selection at a given selection intensity than if both sexes are subject to half that selection intensity. This result is commensurate with existing population genetic models. However, genetic models may be inappropriate for sexually selected traits because many of them may be of non-genetic origin, such as maternal effects or – more likely –epigenetic effects. Phenotypic models obviate this problem by accommodating both genetic and epigenetic effects, as well as maternaleffects. Our phenotypic model of sex-limited temporally fluctuating selection shows that substantial heritable variation can be maintained and therebyprovides impetus to develop population epigenetic models.  相似文献   

6.
M. Slatkin  S. A. Frank 《Genetics》1990,125(1):207-213
The independence of two phenotypic characters affected by both pleiotropic and nonpleiotropic mutations is investigated using a generalization of M. Slatkin's stepwise mutation model of 1987. The model is used to determine whether predictions of either the multivariate normal model introduced in 1980 by R. Lande or the house-of-cards model introduced in 1985 by M. Turelli can be regarded as typical of models that are intermediate between them. We found that, under stabilizing selection, the variance of one character at equilibrium may depend on the strength of stabilizing selection on the other character (as in the house-of-cards model) or not (as in the multivariate normal model) depending on the types of mutations that can occur. Similarly, under directional selection, the genetic covariance between two characters may increase substantially (as in the house-of-cards model) or not (as in the multivariate normal model) depending on the kinds of mutations that are assumed to occur. Hence, even for the simple model we consider, neither the house-of-cards nor the multivariate normal model can be used to make predictions, making it unlikely that either could be used to draw general conclusions about more complex and realistic models.  相似文献   

7.
The theory of pleiotropic mutation and selection is investigated and developed for a large population of asexual organisms. Members of the population are subject to stabilising selection on Omega phenotypic characters, which each independently affect fitness. Pleiotropy is incorporated into the model by allowing each mutation to simultaneously affect all characters. To expose differences with continuous-allele models, the characters are taken to originate from discrete-effect alleles and thus have discrete genotypic effects. Each character can take the values nxDelta where n=0,+/-1,+/-2, em leader, and the splitting in character effects, Delta, is a parameter of the model. When the distribution of mutant effects is normally distributed around the parental value, and Delta is large, a "stepwise" model of mutation arises, where only adjacent trait effects are accessible from a single mutation. The present work is primarily concerned with the opposite limit, where Delta is small and many different trait effects are accessible from a single mutation.In contrast to what has been established for continuous-effect models, discrete-effect models do not yield a singular equilibrium distribution of genotypic effects for any value of Omega. Instead, for different values of Omega, the equilibrium frequencies of trait values have very different dependencies on Delta. For Omega=1 and 2, decreasing Delta broadens the width of the frequency distribution and hence increases the equilibrium level of polymorphism. For all sufficiently large values of Omega, however, decreasing Delta decreases the width of the frequency distribution and the equilibrium level of polymorphism. The connection with continuous trait models follows when the limit Delta-->0 is considered, and a singular probability density of trait values is obtained for all sufficiently large Omega.  相似文献   

8.
Rice DP  Townsend JP 《Genetics》2012,190(4):1533-1545
Evolutionary biologists attribute much of the phenotypic diversity observed in nature to the action of natural selection. However, for many phenotypic traits, especially quantitative phenotypic traits, it has been challenging to test for the historical action of selection. An important challenge for biologists studying quantitative traits, therefore, is to distinguish between traits that have evolved under the influence of strong selection and those that have evolved neutrally. Most existing tests for selection employ molecular data, but selection also leaves a mark on the genetic architecture underlying a trait. In particular, the distribution of quantitative trait locus (QTL) effect sizes and the distribution of mutational effects together provide information regarding the history of selection. Despite the increasing availability of QTL and mutation accumulation data, such data have not yet been effectively exploited for this purpose. We present a model of the evolution of QTL and employ it to formulate a test for historical selection. To provide a baseline for neutral evolution of the trait, we estimate the distribution of mutational effects from mutation accumulation experiments. We then apply a maximum-likelihood-based method of inference to estimate the range of selection strengths under which such a distribution of mutations could generate the observed QTL. Our test thus represents the first integration of population genetic theory and QTL data to measure the historical influence of selection.  相似文献   

9.
自然选择理论认为生物个体或者种群在进化的过程中, 其基因或者性状、行为策略的选择一定是能够提高其适合度或者达到某个可期的“目标”。然而, 随着某个突变基因或者性状特征、行为策略在种群中扩散, 其期望收益将随着其在种群中分布的密度变化或环境改变而发生改变, 这就是适合度景观的悖论, 即静态的、固定可期望的收益可能因此而不存在。基于动态而非静态适合度景观的概念, 我们提出路径依赖的自然选择概念。路径依赖的自然选择过程中, 一个突变的基因或表型在某种环境下随机产生, 但是该基因或表型在某些特定环境下会产生正反馈。尤其是在正反馈与随机漂变的共同作用下, 多条路径的演化就可能发生, 并且其路径的形成将同时受到其种群进化历史过程和空间特征分布等因素的强烈影响。而在不同路径下, 由于观测维度、角度和尺度的不同, 适合度意义将因此而存在不同。在此意义下, 自然选择更可能选择路径频率而不是适合度大小。基于上述概念, 我们借鉴现代物理学中复函数的方法, 来描述多重动力对物种形成或者生物特征、种群进化等路径依赖的演化过程, 以期为同域物种、隐存种形成以及生物多样性演化提供解释机制。  相似文献   

10.
A model of stabilizing selection on a multilocus character is proposed that allows the maintenance of stable allelic polymorphism and linkage disequilibrium. The model is a generalization of Lerner's model of homeostasis in which heterozygotes are less susceptible to environmental variation and hence are superior to homozygotes under phenotypic stabilizing selection. The analysis is carried out for weak selection with a quadratic-deviation model for the stabilizing selection. The stationary state is characterized by unequal allele frequencies, unequal proportions of complementary gametes, and a reduction of the genetic (and phenotypic) variance by the linkage disequilibrium. The model is compared with Mather's polygenic balance theory, with models that include mutation-selection balance, and others that have been proposed to study the role of linkage disequilibrium in quantitative inheritance.  相似文献   

11.
Janna L. Fierst 《Genetica》2013,141(4-6):157-170
Environmental patterns of directional, stabilizing and fluctuating selection can influence the evolution of system-level properties like evolvability and mutational robustness. Intersexual selection produces strong phenotypic selection and these dynamics may also affect the response to mutation and the potential for future adaptation. In order to to assess the influence of mating preferences on these evolutionary properties, I modeled a male trait and female preference determined by separate gene regulatory networks. I studied three sexual selection scenarios: sexual conflict, a Gaussian model of the Fisher process described in Lande (in Proc Natl Acad Sci 78(6):3721–3725, 1981) and a good genes model in which the male trait signalled his mutational condition. I measured the effects these mating preferences had on the potential for traits and preferences to evolve towards new states, and mutational robustness of both the phenotype and the individual’s overall viability. All types of sexual selection increased male phenotypic robustness relative to a randomly mating population. The Fisher model also reduced male evolvability and mutational robustness for viability. Under good genes sexual selection, males evolved an increased mutational robustness for viability. Females choosing their mates is a scenario that is sufficient to create selective forces that impact genetic evolution and shape the evolutionary response to mutation and environmental selection. These dynamics will inevitably develop in any population where sexual selection is operating, and affect the potential for future adaptation.  相似文献   

12.
We examined causes of speciation in asexual populations in both sympatry and parapatry, providing an alternative explanation for the speciation patterns reported by Dieckmann and Doebeli (1999) and Doebeli and Dieckmann (2003). Both in sympatry and parapatry, they find that speciation occurs relatively easily. We reveal that in the sympatric clonal model, the equilibrium distribution is continuous and the disruptive selection driving evolution of discrete clusters is only transient. Hence, if discrete phenotypes are to remain stable in the sympatric sexual model, there should be some source of nontransient disruptive selection that will drive evolution of assortment. We analyze sexually reproducing populations using the Bulmer's infinitesimal model and show that cost-free assortment alone leads to speciation and disruptive selection only arises when the optimal distribution cannot be matched--in this example, because the phenotypic range is limited. In addition, Doebeli and Dieckmann's analyses assumed a high genetic variance and a high mutation rate. Thus, these theoretical models do not support the conclusion that sympatric speciation is a likely outcome of competition for resources. In their parapatric model (Doebeli and Dieckmann 2003), clustering into distinct phenotypes is driven by edge effects, rather than by frequency-dependent competition.  相似文献   

13.
The vast amount of data generated by genome projects and the recent development of population genetics models make comparative sequence analyses a very powerful approach with which to detect the footprints of selection. Studies on synonymous codon usage show that traits with minuscule phenotypic effects can be molded by natural selection. But variations in mutation patterns and processes of biased gene conversion make it difficult to distinguish between selective and neutral evolutionary processes.  相似文献   

14.
Organisms express phenotypic plasticity during social interactions. Interacting phenotype theory has explored the consequences of social plasticity for evolution, but it is unclear how this theory applies to complex social structures. We adapt interacting phenotype models to general social structures to explore how the number of social connections between individuals and preference for phenotypically similar social partners affect phenotypic variation and evolution. We derive an analytical model that ignores phenotypic feedback and use simulations to test the predictions of this model. We find that adapting previous models to more general social structures does not alter their general conclusions but generates insights into the effect of social plasticity and social structure on the maintenance of phenotypic variation and evolution. Contribution of indirect genetic effects to phenotypic variance is highest when interactions occur at intermediate densities and decrease at higher densities, when individuals approach interacting with all group members, homogenizing the social environment across individuals. However, evolutionary response to selection tends to increase at greater network densities as the effects of an individual's genes are amplified through increasing effects on other group members. Preferential associations among similar individuals (homophily) increase both phenotypic variance within groups and evolutionary response to selection. Our results represent a first step in relating social network structure to the expression of social plasticity and evolutionary responses to selection.  相似文献   

15.
The influence of phenotypic effects of genetic mutations on molecular evolution is not well understood. Neutral and nearly neutral theories of molecular evolution predict a negative relationship between the evolutionary rate of proteins and their functional importance; nevertheless empirical studies seeking relationships between evolutionary rate and the phenotypic role of proteins have not produced conclusive results. In particular, previous studies have not found the expected negative correlation between evolutionary rate and gene pleiotropy. Here, we studied the effect of gene pleiotropy and the phenotypic size of mutations on the evolutionary rate of genes in a geometrical model, in which gene pleiotropy was characterized by n molecular phenotypes that affect organismal fitness. For a nearly neutral process, we found a negative relationship between evolutionary rate and mutation size but pleiotropy did not affect the evolutionary rate. Further, for a selection model, where most of the substitutions were fixed by natural selection in a randomly fluctuating environment, we also found a negative relationship between evolutionary rate and mutation size, but interestingly, gene pleiotropy increased the evolutionary rate as √n. These findings may explain part of the disagreement between empirical data and traditional expectations.  相似文献   

16.
Analyses of evolution and maintenance of quantitative genetic variation depend on the mutation models assumed. Currently two polygenic mutation models have been used in theoretical analyses. One is the random walk mutation model and the other is the house-of-cards mutation model. Although in the short term the two models give similar results for the evolution of neutral genetic variation within and between populations, the predictions of the changes of the variation are qualitatively different in the long term. In this paper a more general mutation model, called the regression mutation model, is proposed to bridge the gap of the two models. The model regards the regression coefficient, γ, of the effect of an allele after mutation on the effect of the allele before mutation as a parameter. When γ = 1 or 0, the model becomes the random walk model or the house-of-cards model, respectively. The additive genetic variances within and between populations are formulated for this mutation model, and some insights are gained by looking at the changes of the genetic variances as γ changes. The effects of γ on the statistical test of selection for quantitative characters during macroevolution are also discussed. The results suggest that the random walk mutation model should not be interpreted as a null hypothesis of neutrality for testing against alternative hypotheses of selection during macroevolution because it can potentially allocate too much variation for the change of population means under neutrality.  相似文献   

17.
Michael Turelli 《Genetics》1985,111(1):165-195
Previous mathematical analyses of mutation-selection balance for metric traits assume that selection acts on the relevant loci only through the character(s) under study. Thus, they implicitly assume that all of the relevant mutation and selection parameters are estimable. A more realistic analysis must recognize that many of the pleiotropic effects of loci contributing variation to a given character are not known. To explore the consequences of these hidden effects, I analyze models of two pleiotropically connected polygenic traits, denoted P1 and P2. The actual equilibrium genetic variance for P1, based on complete knowledge of all mutation and selection parameters for both P1 and P2, can be compared to a prediction based solely on observations of P1. This extrapolation mimics empirically obtainable predictions because of the inevitability of unknown pleiotropic effects. The mutation parameters relevant to P1 are assumed to be known, but selection intensity is estimated from the within-generation reduction of phenotypic variance for P1. The extrapolated prediction is obtained by substituting these parameters into formulas based on single-character analyses. Approximate analytical and numerical results show that the level of agreement between these univariate extrapolations and the actual equilibrium variance depends critically on both the genetic model assumed and the relative magnitudes of the mutation and selection parameters. Unless per locus mutation rates are extremely high, i.e., generally greater than 10(-4), the widely used gaussian approximation for genetic effects at individual loci is not applicable. Nevertheless, the gaussian approximations predict that the true and extrapolated equilibria are in reasonable agreement, i.e., within a factor of two, over a wide range of parameter values. In contrast, an alternative approximation that applies for moderate and low per locus mutation rates predicts that the extrapolation will generally overestimate the true equilibrium variance unless there is little selection associated with hidden effects. The tendency to overestimate is understandable because selection acts on all of the pleiotropic manifestations of a new mutation, but equilibrium covariances among the characters affected may not reveal all of this selection. This casts doubt on the proposal that much of the additive polygenic variance observed in natural populations can be explained by mutation-selection balance. It also indicates the difficulty of critically evaluating this hypothesis.  相似文献   

18.
Evolutionary stability of dioecy and nuclear gynodioecy in higher plants requires that females produce over twice as many successful seeds as hermaphrodites. This fitness differential is widely thought to derive primarily from the advantages of outcrossing caused by high selfing rates and inbreeding depression in the hermaphrodite. This study hypothesized that (i) extraordinarily high deleterious mutation rates are necessary to double female seed success due to outcrossing, and (ii) the large difference in outcrossing rates between sex morphs causes differential purging of these mutations, resulting in additional genetic selection on male sterility. Using genetically explicit models, I showed that the phenotypic outcrossing advantage requires at least one new highly recessive deleterious mutation per genome per generation, regardless of selection coefficient. However, under this mutational regime, differential purging created strong genetic selection against recessive male sterility that overwhelmed the phenotypic selection in favour of outcrossing. In very small populations and for dominant male sterility, this genetic selection was weaker or absent. This first genetically explicit study of the outcrossing advantage of unisexual females may shed new light on both the genetic and selective conditions for the evolution of gynodioecy and dioecy.  相似文献   

19.
There have been substantial improvements in statistical tools for assessing the evolutionary roles of mutation and natural selection from interspecific sequence data. The importance of having the rate at which a point mutation occurs depend on the DNA sequence at sites surrounding the mutation is now better appreciated and can be accommodated in probabilistic models of protein evolution. To quantify the evolutionary impact of some aspect of phenotype, one promising strategy is to develop a system for predicting phenotype from the DNA sequence and to then infer how the evolutionary rates of sequence change are affected by the predicted phenotypic consequences of the changes. Although statistical tools for characterizing protein evolution are improving, the list of candidate phenomena that can affect rates of protein evolution is long and the relative contributions of these phenomena are only beginning to be disentangled.  相似文献   

20.
Many traits are phenotypically dimorphic but determined by the action of many loci, the phenotype being a result of a threshold of sensitivity. Quantitative genetic analysis has shown that generally there is considerable additive genetic variation for the trait, the average heritability being 0.52. In numerous cases threshold traits have been shown, or are assumed, to be under frequency-dependent selection; examples include satellite-territorial behaviour, sex-determination, wing dimorphism and trophic dimorphism. In this paper I investigate the potential for frequency-dependent selection to maintain both phenotypic and additive genetic variation in threshold traits. The qualitative results are robust to the particular form of the frequency-dependent selection function. The equilibrium proportion is more or less independent of population size but the heritability increases with population size, typically approaching its maximal value at a population size of 5000, when the mutation rate is 10?4. A tenfold decrease in the mutation rate requires an approximate doubling of the population size before an asymptotic value is approached. Thus frequency-dependent selection can account for both the existence of two morphs in a population and the observed levels of heritability. It is also shown, both via simulation and theory, that the quantitative genetic model and a simple phenotypic analysis predict the same equilibrium morph proportion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号