首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物尿苷二磷酸葡萄糖焦磷酸化酶(UGPase)是蔗糖合成与降解途径的关键酶。本研究采用水稻叶片离体培养方法,结合Northern杂交技术,研究了外源糖对水稻Ugp1基因表达的影响。研究结果表明,蔗糖、葡萄糖、果糖、光照均能上调水稻Ugp1基因的表达,同时这种上调表达依赖于己糖激酶;果糖能上调水稻成熟叶片中Ugp1基因的表达,但并不影响苗期叶片中Ugp1基因的表达,具组织特异性;葡萄糖和果糖协同作用对Ugp1基因的诱导表达强于蔗糖,这种诱导除依赖于己糖激酶外,还存在其它未知的调控途径。水稻中存在UGPase的多种异构体,蔗糖及光照可诱导水稻Ugp1基因的上调表达,但对水稻UGPase的多种异构体形式并无影响。研究结果将有助于深入了解水稻Ugp1基因与糖信号途径互作调控网络。  相似文献   

2.
UGPase (UDP-glucose pyrophosphorylase) is highly conserved among eukaryotes. UGPase reversibly catalyses the formation of UDP-glucose and is critical in carbohydrate metabolism. Previous studies have mainly focused on the UGPases from plants, fungi and parasites, and indicate that the regulatory mechanisms responsible for the enzyme activity vary among different organisms. In the present study, the crystal structure of hUGPase (human UGPase) was determined and shown to form octamers through end-to-end and side-by-side interactions. The observed latch loop in hUGPase differs distinctly from yUGPase (yeast UGPase), which could explain why hUGPase and yUGPase possess different enzymatic activities. Mutagenesis studies showed that both dissociation of octamers and mutations of the latch loop can significantly affect the UGPase activity. Moreover, this latch effect is also evolutionarily meaningful in UGPase from different species.  相似文献   

3.
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme of synthesis of sucrose, cellulose, and several other polysaccharides in all plants. The protein is evolutionarily conserved among eukaryotes, but has little relation, aside from its catalytic reaction, to UGPases of prokaryotic origin. Using protein homology modeling strategy, 3D structures for barley, poplar, and Arabidopsis UGPases have been derived, based on recently published crystal structure of human UDP-N-acetylglucosamine pyrophosphorylase. The derived 3D structures correspond to a bowl-shaped protein with the active site at a central groove, and a C-terminal domain that includes a loop (I-loop) possibly involved in dimerization. Data on a plethora of earlier described UGPase mutants from a variety of eukaryotic organisms have been revisited, and we have, in most cases, verified the role of each mutation in enzyme catalysis/regulation/structural integrity. We have also found that one of two alternatively spliced forms of poplar UGPase has a very short I-loop, suggesting differences in oligomerization ability of the two isozymes. The derivation of the structural model for plant UGPase should serve as a useful blueprint for further function/structure studies on this protein.  相似文献   

4.
UDP-glucose is the universal activated form of glucose, employed in all organisms for glucosyl transfer reactions and as precursor for various activated carbohydrates. In animal and fungal metabolism, UDP-glucose is required for utilization of galactose and for the synthesis of glycogen, the major carbohydrate storage polymer. The formation of UDP-glucose is catalyzed by UDP-glucose pyrophosphorylase (UGPase), which is highly conserved among eukaryotes. Here, we present the crystal structure of yeast UGPase, Ugp1p. Both in solution and in the crystal, Ugp1p forms homooctamers, which represent the enzymatically active form of the protein. Ugp1p subunits consist of three domains, with the active site presumably located in the central SpsA GnT I core (SGC) domain. The association in the octamer is mediated by contacts between left-handed beta-helices in the C-terminal domains, forming a toroidal solenoid structure in the core of the complex. The catalytic domains attached to this scaffold core do not directly contact each other, consistent with simple Michaelis-Menten kinetics found for Ugp1p. Conservation of hydrophobic residues at the subunit interfaces suggests that all fungal and animal homologs form this quarternary structure arrangement in contrast to monomeric plant UGPases, which have charged residues at these positions. Implications of this oligomeric arrangement for regulation of UGPase activity in fungi and animals are discussed.  相似文献   

5.
UDP-glucose pyrophosphorylase (UGPase) is an important enzyme in the production (and conversions) of UDP-glucose, a key precursor for carbohydrate biosynthesis. cDNAs corresponding to two UGPase isozymes in Arabidopsis were overexpressed in Escherichia coli and, subsequently, the recombinant proteins were purified and characterized. Both proteins were highly conserved, sharing 93% identity. Based on crystal structure-derived images, the main amino acid differences mapped to N- and C-termini domains, but not to central active site region. The two proteins existed mainly as monomers, and they had similar molecular masses of ca. 53 kDa. However, comparison of molecular masses of UGPases from Arabidopsis root and leaf extracts revealed that the root protein was slightly larger, suggesting a post-translational modification. Specific activity of the purified UGPase-1 was ca. 10-30% lower than that of UGPase-2, depending on direction of the reaction, whereas its K(m) values with all substrates in both directions of the reaction were consistently ca. twice lower than those of UGPase-2 (0.03-0.14 mM vs. 0.07-0.36 mM, respectively). Both proteins were "true" UGPases, and had no activity with ADP-glucose/ATP or galactose-1-P. Equilibrium constant for both proteins was ca. 0.3, suggesting preference for the pyrophosphorolysis direction of the reaction. The data are discussed with respect to potential roles of UGPase in carbohydrate synthesis/metabolism in Arabidopsis.  相似文献   

6.
A polymorphic protein well-correlated to the diploid S genotypes of the pollen parent was detected by two-dimensional gel electrophoresis in Pyrus pyrifolia (Japanese pear). Its molecular weight was about 50 kDa, and it was expressed primarily in pollen. Partial amino acid sequences of the polymorphic protein from 'Nijisseiki' (S2S4), a cultivar of P. pyrifolia, were determined. Based on these sequences, two cDNA sequences associated with the S2 and S4 genotypes were identified by PCR-based methods. Both encode a protein of 458 amino acids whose sequence has high similarity to eukaryotic UDP-glucose pyrophosphorylases (UGPases) (EC 2.7.7.9), so they were named UGPases PA and PC. As there are only three amino acid substitutions between UGPases PA and PC, it is unlikely that they are pollen factors that recognize self and non-self S-RNases. Although this UGPase had more than 75% sequence identity to the known plant UGPases, its C-terminal sequences differed markedly. This unique C-terminal region of UGPases PA and PC may act in their subcellular localization in the pollen or interact with some other factor(s).  相似文献   

7.
8.
Eleven cDNA clones encoding UDP-glucose pyrophosphorylase (UGPase) have been isolated from cDNA libraries prepared from seed embryo, seed endosperm and leaves of barley (Hordeum vulgare L.). The sequences were identical, with the exception of positioning of the poly(A) tail; at least five clones with different polyadenylation sites were found. For a putative full-length cDNA [1775 nucleotides (nt) plus polyadenylation tail], isolated from an embryo cDNA library, an open reading frame of 1419 nt encodes a protein of 473 amino acids (aa) of 51.6 kDa. An alignment of the derived aa sequence with other UGPases has revealed high identity to UGPases from eukaryotic tissues, but not from bacteria. Within the aa sequence, no homology was found to a UDP-glucose-binding motif that has been postulated for a family of glucosyl transferases. The derived aa sequence of UGPase contains three putative N-glycosylation sites and has a highly conserved positioning of five Lys residues, previously shown to be critical for catalysis and substrate binding of potato tuber UGPase. A possible role for N-glycosylation in the intracellular targeting of UGPase is discussed.  相似文献   

9.
The enzyme UDP-glucose pyrophosphorylase (UGPase) from potato (Solanum tuberosum L. cv Norchip) tubers was purified 177-fold to near homogeneity and to a specific activity of 1099 international units/mg of protein. The molecular mass of the purified enzyme was 53 kD as determined by SDS-PAGE and gel filtration. Immunological and activity assays detected UGPase at similar levels in potato stems, stolons, and tubers. Leaves and roots contained lower levels of UGPase activity and protein. Lineweaver-Burk plots for substrates inorganic pyrophosphate and UDP-glucose were linear in the pyrophosphorolytic direction, yielding Km values of 0.13 and 0.14 mM, respectively. However, Lineweaver-Burk plots for the substrates glucose-1-P and UTP were biphasic in nature when UGPase was assayed in the direction of UDP-glucose synthesis. At physiological substrate concentrations (i.e. from 0.05-0.20 mM), Km values of 0.08 mM (glucose-1-P) and 0.12mM (UTP) were obtained. When substrate concentrations increased above 0.20 mM, Km values increased to 0.68 mM (glucose-1-P) and 0.53 mM (UTP). These kinetic patterns of potato UGPase suggest a "negative cooperative effect" (A. Conway, D.E. Koshland, Jr. [1968] Biochemistry 7: 4011-4022) with respect to the substrates glucose-1-P and UTP. The biphasic substrate saturation curves were similar to the kinetics of the dimeric form of UGPase purified from Salmonella typhimurium (T. Nakae [1971] J Biol Chem 246: 4404-4411). The in vivo significance of the enzyme's "negative cooperativity" in the direction of UDP-glucose synthesis and potato sweetening is discussed.  相似文献   

10.
UDP-glucose pyrophosphorylase (UGPase) is involved in the production of UDP-glucose, a key precursor to polysaccharide synthesis in all organisms. UGPase activity has recently been proposed to be regulated by oligomerization, with monomer as the active species. In the present study, we investigated factors affecting oligomerization status of the enzyme, using purified recombinant barley UGPase. Incubation of wild-type (wt) UGPase with phosphate or Tris buffers promoted oligomerization, whereas Mops and Hepes completely dissociated the oligomers to monomers (the active form). Similar buffer effects were observed for KK127-128LL and C99S mutants of UGPase; however, the buffers had a relatively small effect on the oligomerization status of the LIV135-137NIN mutant, impaired in deoligomerization ability and showing only 6-9% activity of the wt. Buffer composition had no effect on UGPase activity at UGPase protein concentrations below ca. 20 ng/ml. However, at higher protein concentration the activity in Tris, but not Mops nor Hepes, underestimated the amount of the enzyme. The data suggest that oligomerization status of UGPase can be controlled by subtle changes in an immediate environment (buffers) and by protein dilution. The evidence is discussed in relation to our recent model of UGPase structure/function, and with respect to earlier reports on the oligomeric integrity/activity of UGPases from eukaryotic tissues.  相似文献   

11.
Expanding the scope of stereoselectivity is of current interest in enzyme catalysis. In this study, using error-prone polymerase chain reaction (PCR), a thermostable adenosine diphosphate (ADP)-glucose pyrophosphorylase (AGPase) from Thermus caldophilus GK-24 has been altered to improve its catalytic activity toward enatiomeric substrates including [glucose-1-phosphate (G-1-P) + uridine triphosphate (UTP)] and [N-acetylglucosamine-1-phosphate (GlcNAc) + UTP] to produce uridine diphosphate (UDP)-glucose and UDP-N-acetylglucosamine, respectively. To elucidate the amino acids responsible for catalytic activity, screening for UDP-glucose pyrophosphorylase (UGPase) and UDP-N-acetylglucosamine pyrophosphorylase (UNGPase) activities was carried out. Among 656 colonies, two colonies showed UGPase activities and three colonies for UNGPase activities. DNA sequence analyses and enzyme assays showed that two mutant clones (H145G) specifically have an UGPase activity, indicating that the changed glycine residue from histidine has the base specificity for UTP. Also, three double mutants (H145G/A325V) showed a UNGPase, and A325 was associated with sugar binding, conferring the specificity for the sugar substrates and V325 of the mutant appears to be indirectly involved in the binding of the N-acetylamine group of N-acetylglucosmine-1-phosphate. The authors Hosung Sohn and Yong-Sam Kim equally contributed to the study.  相似文献   

12.
Magnesium ion (Mg2+) is an essential metal element for life, and has many cellular functions, including ATP utilization, activation of enzymes, and maintenance of genomic stability. The intracellular Mg2+ concentration is regulated by a class of transmembrane proteins, called Mg2+ transporters. One of the prokaryotic Mg2+ transporters, MgtE, is a 450-residue protein, and functions as a dimer. We previously reported that MgtE exhibits the channel-like electrophysiological property, i.e., it permeates Mg2+ according to the electrochemical potential of Mg2+. The Mg2+-permeation pathway opens in response to the decrease of the intracellular Mg2+ concentration, while it is completely closed at the intracellular Mg2+ concentration of 10 mM. The crystal structures of the MgtE dimer revealed that the Mg2+-sensing cytoplasmic region consists of the N and CBS domains. The Mg2+-bound state of MgtE adopts a compact, globular conformation, which is stabilized by the coordination of a number of Mg2+ ions between these domains. On the other hand, in the Mg2+-unbound state, these domains are far apart, and fixed by the crystal packing. Therefore, structural analyses in solution were awaited, in order to characterize the Mg2+-dependent alteration of the MgtE structure and dynamics relevant to its gating. In this paper, we report the backbone resonance assignments of the dimer of the cytoplasmic region of the MgtE from Thermus thermophilus with a molecular weight of 60 KDa, in the Mg2+-unbound state.  相似文献   

13.
Active site geometry of glucose-1-phosphate uridylyltransferase   总被引:2,自引:0,他引:2       下载免费PDF全文
Glucose-1-phosphate uridylyltransferase, or UGPase, catalyzes the production of UDP-glucose from glucose-1-phosphate and UTP. Because of the biological role of UDP-glucose in glycogen synthesis and in the formation of glycolipids, glycoproteins, and proteoglycans, the enzyme is widespread in nature. Recently this laboratory reported the three-dimensional structure of UGPase from Escherichia coli. While the initial X-ray analysis revealed the overall fold of the enzyme, details concerning its active site geometry were limited because crystals of the protein complexed with either substrates or products could never be obtained. In an effort to more fully investigate the active site geometry of the enzyme, UGPase from Corynebacterium glutamicum was subsequently cloned and purified. Here we report the X-ray structure of UGPase crystallized in the presence of both magnesium and UDP-glucose. Residues involved in anchoring the ligand to the active site include the polypeptide chain backbone atoms of Ala 20, Gly 21, Gly 117, Gly 180, and Ala 214, and the side chains of Glu 36, Gln 112, Asp 143, Glu 201, and Lys 202. Two magnesium ions are observed coordinated to the UDP-glucose. An alpha- and a beta-phosphoryl oxygen, three waters, and the side chain of Asp 142 ligate the first magnesium, whereas the second ion is coordinated by an alpha-phosphoryl oxygen and five waters. The position of the first magnesium is conserved in both the glucose-1-phosphate thymidylyltransferases and the cytidylyltransferases. The structure presented here provides further support for the role of the conserved magnesium ion in the catalytic mechanisms of the sugar-1-phosphate nucleotidylyltransferases.  相似文献   

14.
Multiple isoforms of UDP-glucose pyrophosphorylase in rice   总被引:2,自引:0,他引:2  
Uridine diphosphate (UDP)-glucose pyrophosphorylases (UGPases, EC 2.7.7.9) are key enzymes in plant carbohydrate metabolism and cell-wall biosynthesis, catalyzing the reversible production of glucose-1-phosphate and uridine triphosphate from UDP-glucose and pyrophosphate. In the study presented here, two-dimensional gel electrophoresis followed by peptide sequencing analysis using nanospray electrospray ionization tandem mass spectrometry showed that rice ( Oryza sativa L.) UGPase undergoes N-terminal acetylation, which may be a conserved modification of plant UGPases. We also obtained indications, using two-dimensional gel electrophoresis in combination with western blot analysis, that multiple isoforms of UGPase are present in rice in vivo and are regulated tissue-specifically. The rice genome contains two homologous UGPase genes, OsUgp1 and OsUgp2 . We present evidence that both OsUgp1 and OsUgp2 are ubiquitously expressed throughout rice development, and that OsUgp1 is expressed at much higher levels than OsUgp2 . In accordance with the gene expression patterns, the UGPase isoform derived from the OsUgp1 gene predominated in various rice tissues and exhibited qualitative variations (position shifts and presence/absence) between rice varieties B5 and Taichung native 1 (TN1). Our results demonstrate that these qualitative variations are attributable to a single amino acid substitution of Asp-462 in B5 by His in TN1, corresponding to the allelic difference in the OsUgp1 gene between B5 and TN1.  相似文献   

15.
Octaprenyl pyrophosphate synthase (OPPs), an enzyme belonging to the trans-prenyltransferases family, is involved in the synthesis of C40 octaprenyl pyrophosphate (OPP) by reacting farnesyl pyrophosphate (FPP) with five isopentenyl pyrophosphates (IPP). It has been reported that OPPs is essential for bacteria's normal growth and is a potential target for novel antibacterial drug design. Here we report the crystal structure of OPPs from Helicobacter pylori, determined by MAD method at 2.8 Å resolution and refined to 2.0 Å resolution. The substrate IPP was docked into HpOPPs structure and residues involved in IPP recognition were identified. The other substrate FPP, the intermediate GGPP and a nitrogen-containing bisphosphonate drug were also modeled into the structure. The resulting model shed some lights on the enzymatic mechanism, including (1) residues Arg87, Lys36 and Arg39 are essential for IPP binding; (2) residues Lys162, Lys224 and Gln197 are involved in FPP binding; (3) the second DDXXD motif may involve in FPP binding by Mg2+ mediated interactions; (4) Leu127 is probably involved in product chain length determination in HpOPPs and (5) the intermediate products such as GGPP need a rearrange to occupy the binding site of FPP and then IPP is reloaded. Our results also indicate that the nitrogen-containing bisphosphonate drugs are potential inhibitors of FPPs and other trans-prenyltransferases aiming at blocking the binding of FPP.  相似文献   

16.
UDP-glucose pyrophosphorylase synthesizes UDP-glucose from UTP and glucose 1-phosphate and exists in almost all species. Most bacteria possess a GalU-type UDP-glucose pyrophosphorylase, whereas many cyanobacteria species do not. In certain cyanobacteria, UDP-glucose is used as a substrate for synthesis of exopolysaccharide cellulose in spite of the absence of GalU-type UDP-glucose pyrophosphorylase. Therefore, there should be an uncharacterized UDP-glucose pyrophosphorylase in cyanobacteria. Here, we show that all cyanobacteria possess a non-GalU-type bacterial UDP-glucose pyrophosphorylase, i.e., CugP, a novel family in the nucleotide triphosphate transferase superfamily. The expressed recombinant Synechocystis sp. strain PCC 6803 CugP had pyrophosphorylase activity that was highly specific for UTP and glucose 1-phosphate. The fact that the CugP gene cannot be deleted completely in Synechocystis sp. PCC 6803 suggests its central role as the substrate supplier for galactolipid synthesis. Galactolipids are major constituents of the photosynthetic thylakoid membrane and important for photosynthetic activity. Based on phylogenetic analysis, this CugP-type UDP-glucose pyrophosphorylase may have recently been horizontally transferred to certain noncyanobacteria.  相似文献   

17.
Uridine diphosphate-glucose pyrophosphorylase (UGPase) represents a ubiquitous enzyme, which catalyzes the formation of UDP-glucose, a key metabolite of the carbohydrate pathways of all organisms. In the protozoan parasite Leishmania major, which causes a broad spectrum of diseases and is transmitted to humans by sand fly vectors, UGPase represents a virulence factor because of its requirement for the synthesis of cell surface glycoconjugates. Here we present the crystal structures of the L. major UGPase in its uncomplexed apo form (open conformation) and in complex with UDP-glucose (closed conformation). The UGPase consists of three distinct domains. The N-terminal domain exhibits species-specific differences in length, which might permit distinct regulation mechanisms. The central catalytic domain resembles a Rossmann-fold and contains key residues that are conserved in many nucleotidyltransferases. The C-terminal domain forms a left-handed parallel beta-helix (LbetaH), which represents a rarely observed structural element. The presented structures together with mutagenesis analyses provide a basis for a detailed analysis of the catalytic mechanism and for the design of species-specific UGPase inhibitors.  相似文献   

18.
HutP is an RNA-binding protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis, by binding to cis-acting regulatory sequences on hut mRNA. It requires L-histidine and an Mg2+ ion for binding to the specific sequence within the hut mRNA. In the present study, we show that several divalent cations can mediate the HutP–RNA interactions. The best divalent cations were Mn2+, Zn2+ and Cd2+, followed by Mg2+, Co2+ and Ni2+, while Cu2+, Yb2+ and Hg2+ were ineffective. In the HutP–RNA interactions, divalent cations cannot be replaced by monovalent cations, suggesting that a divalent metal ion is required for mediating the protein–RNA interactions. To clarify their importance, we have crystallized HutP in the presence of three different metal ions (Mg2+, Mn2+ and Ba2+), which revealed the importance of the metal ion binding site. Furthermore, these analyses clearly demonstrated how the metal ions cause the structural rearrangements that are required for the hut mRNA recognition.  相似文献   

19.
The glucose 1-phosphate uridylyltransferase (GalU) is absolutely required for the biosynthesis of capsular polysaccharide, the sine qua non virulence factor of Streptococcus pneumoniae. The pneumococcal GalU protein was overexpressed in Escherichia coli, and purified. GalU showed a pI of 4.23, and catalyzed the reversible formation of UDP-glucose and pyrophosphate from UTP and glucose 1-phosphate with Km values of 0.4 mM for UDP-glucose, 0.26 mM for pyrophosphate, 0.19 mM for glucose 1-phosphate, and 0.24 mM for UTP. GalU has an optimum pH of 8–8.5, and requires Mg2+ for activity. Neither ADP-glucose nor TDP-glucose is utilized as substrates in vitro. The purification of GalU represents a fundamental step to provide insights on drug design to control the biosynthesis of the main pneumococcal virulence factor.  相似文献   

20.
A re-examination of the kinetic properties of UDP-glucose: (1→3)-β-glucan (callose) synthases from mung bean seedlings (Vigna radiata) and cotton fibers (Gossypium hirsutum) shows that these enzymes have a complex interaction with UDP-glucose and various effectors. Stimulation of activity by micromolar concentrations of Ca2+ and millimolar concentrations of β-glucosides or other polyols is highest at low (<100 micromolar) UDP-glucose concentrations. These effectors act both by raising the Vmax of the enzyme, and by lowering the apparent Km for UDP-glucose from >1 millimolar to 0.2 to 0.3 millimolar. Mg2+ markedly enhances the affinity of the mung bean enzyme for Ca2+ but not for β-glucoside; with saturating Ca2+, Mg2+ only slightly stimulates further production of glucan. However, the presence of Mg2+ during synthesis, or NaBH4 treatment after synthesis, changes the nature of the product from dispersed, alkali-soluble fibrils to highly aggregated, alkali-insoluble fibrils. Callose synthesized in vitro by the Ca2+, β-glucoside-activated cotton fiber enzyme, with or without Mg2+, is very similar in size to callose isolated from cotton fibers, but is a linear (1→3)-β-glucan lacking the small amount of branches at C-0-6 found in vivo. We conclude that the high degree of aggregation of the fibrils synthesized with Mg2+in vitro is caused either by an alteration of the glucan at the reducing end or, indirectly, by an effect of Mg2+ on the conformation of the enzyme. Rate-zonal centrifugation of the solubilized mung bean callose synthase confirms that divalent cations can affect the size or conformation of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号