首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sponges are well known to harbor diverse microbes and represent a significant source of bioactive natural compounds derived from the marine environment. Recent studies of the microbial communities of marine sponges have uncovered previously undescribed species and an array of new chemical compounds. In contrast to natural compounds, studies on enzymes with biotechnological potential from microbes associated with sponges are rare although enzymes with novel activities that have potential medical and biotechnological applications have been identified from sponges and microbes associated with sponges. Both bacteria and fungi have been isolated from a wide range of marine sponge, but the diversity and symbiotic relationship of bacteria has been studied to a greater extent than that of fungi isolated from sponges. Molecular methods (e.g., rDNA, DGGE, and FISH) have revealed a great diversity of the unculturable bacteria and archaea. Metagenomic approaches have identified interesting metabolic pathways responsible for the production of natural compounds and may provide a new avenue to explore the microbial diversity and biotechnological potential of marine sponges. In addition, other eukaryotic organisms such as diatoms and unicellular algae from marine sponges are also being described using these molecular techniques. Many natural compounds derived from sponges are suspected to be of bacterial origin, but only a few studies have provided convincing evidence for symbiotic producers in sponges. Microbes in sponges exist in different associations with sponges including the true symbiosis. Fungi derived from marine sponges represent the single most prolific source of diverse bioactive marine fungal compounds found to date. There is a developing interest in determining the true diversity of fungi present in marine sponges and the nature of the association. Molecular methods will allow scientists to more accurately identify fungal species and determine actual diversity of sponge-associated fungi. This is especially important as greater cooperation between bacteriologists, mycologists, natural product chemists, and bioengineers is needed to provide a well-coordinated effort in studying the diversity, ecology, physiology, and association between bacteria, fungi, and other organisms present in marine sponges.  相似文献   

2.
Aims: The conversion of cheap cellulosic biomass to more easily fermentable sugars requires the use of costly cellulases. We have isolated a series of marine sponge‐derived fungi and screened these for cellulolytic activity to determine the potential of this unique environmental niche as a source of novel cellulase activities. Methods and Results: Fungi were isolated from the marine sponge Haliclona simulans. Phylogenetic analysis of these and other fungi previously isolated from H. simulans showed fungi from three phyla with very few duplicate species. Cellulase activities were determined using plate‐based assays using different media and sea water concentrations while extracellular cellulase activities were determined using 3,5‐dinitrosalicylic acid (DNSA)‐based assays. Total and specific cellulase activities were determined using a range of incubation temperatures and compared to those for the cellulase overproducing mutant Hypocrea jecorina QM9414. Several of the strains assayed produced total or relative endoglucanase activities that were higher than H. jecorina, particularly at lower reaction temperatures. Conclusions: Marine sponges harbour diverse fungal species and these fungi are a good source of endoglucanase activities. Analysis of the extracellular endoglucanase activities revealed that some of the marine‐derived fungi produced high endoglucanase activities that were especially active at lower temperatures. Significance and Impact of the Study: Marine‐derived fungi associated with coastal marine sponges are a novel source of highly active endoglucanases with significant activity at low temperatures and could be a source of novel cellulase activities.  相似文献   

3.
Wang G  Li Q  Zhu P 《Antonie van Leeuwenhoek》2008,93(1-2):163-174
Sponges are well documented to harbor large amounts of microbes. Both culture-dependent and molecular approaches have revealed remarkable bacterial diversity in marine sponges. Fungi are commonly isolated from marine sponges, yet no reports on phylogenetic diversity of sponge-inhabiting fungi exist. In this report, we investigated the phylogenetic diversity of culturable fungi from the Hawaiian alien marine sponges Suberites zeteki and Gelliodes fibrosa. A total of 44 independent isolates were recovered from these two sponge species, representing 7 orders and 22 genera of Ascomycota. The majority (58%) of fungal isolates from S. zeteki resided in the Pleosporales group, while the predominant isolates (52%) from G. fibrosa were members of the Hypocreales group. Though differing in fungal species composition and structure, culturable communities of these two sponges displayed similar phylogenetic diversity. At the genus level, only two genera Penicillium and Trichoderma in the Eurotiales and Hypocreales orders, respectively, were present in both sponge species. The other genera of the fungal isolates were associated with either S. zeteki or G. fibrosa. Some of these fungal genera had been isolated from sponges collected in other marine habitats, but more than half of these genera were identified for the first time in these two marine sponges. Overall, the diversity of culturable fungal communities from these two sponge species is much higher than that observed in studies of marine sponges from other areas. This is the first report of phylogenetic diversity of marine sponge-associated fungi and adds one more dimension to our current understanding of the phylogenetic diversity of sponge-symbiotic microbes.  相似文献   

4.
New bioactive natural products have been recently isolated from marine dinoflagellates, marine-derived fungi, marine sponges, and tunicates. AmphidinolidesG (1), H (2), X (3), and Y (4) are cytotoxicmacrocyclicmetabolites separated from marine dinoflagellates Amphidinium sp. Speradine A (5), modiolides A (7) andB (8), sculezonones A (9) and B (10), seragakinone A (11), dictyonamides A (12) and B (13), and sporiolides A (14) and B (15) are secondary metabolites obtained from marine-derived fungi. The absolute stereochemistry of iejimalide B (17), a cytotoxic macrolide isolated from a marine tunicate, has been determined, while plakevulin A (20), an oxylipin metabolite, has been isolated from an Okinawan marine sponge Plakortis sp. In this review the isolation, structure elucidation, and bioactivities of these marine natural products are described.  相似文献   

5.
The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non‐ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge‐symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.  相似文献   

6.
Sponge-associated fungi represent an important source of marine natural products, but little is known about the fungal diversity and the relationship of sponge–fungal association, especially no research on the fungal diversity in the South China Sea sponge has been reported. In this study, a total of 111 cultivable fungi strains were isolated from two South China Sea sponges Clathrina luteoculcitella and Holoxea sp. using eight different media. Thirty-two independent representatives were selected for analysis of phylogenetic diversity according to ARDRA and morphological characteristics. The culturable fungal communities consisted of at least 17 genera within ten taxonomic orders of two phyla (nine orders of the phylum Ascomycota and one order of the phylum Basidiomycota) including some potential novel marine fungi. Particularly, eight genera of Apiospora, Botryosphaeria, Davidiella, Didymocrea, Lentomitella, Marasmius, Pestalotiopsis, and Rhizomucor were isolated from sponge for the first time. Sponge C. luteoculcitella has greater culturable fungal diversity than sponge Holoxea sp. Five genera of Aspergillus, Davidiella, Fusarium, Paecilomyces, and Penicillium were isolated from both sponges, while 12 genera of Apiospora, Botryosphaeria, Candida, Marasmius, Cladosporium, Didymocrea, Hypocrea, Lentomitella, Nigrospora, Pestalotiopsis, Rhizomucor, and Scopulariopsis were isolated from sponge C. luteoculcitella only. Order Eurotiales especially genera Penicillium, Aspergillus, and order Hypocreales represented the dominant culturable fungi in these two South China Sea sponges. Nigrospora oryzae strain PF18 isolated from sponge C. luteoculcitella showed a strong and broad spectrum antimicrobial activities suggesting the potential for antimicrobial compounds production.  相似文献   

7.
Aims: To evaluate the diversity and antimicrobial activity of bacteria from the marine sponges Suberites carnosus and Leucosolenia sp. Methods and Results: Two hundred and thirty‐seven bacteria were isolated from the sponges S. carnosus (Demospongiae) and Leucosolenia sp. (Calcarea). Isolates from the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria were obtained. Isolates of the genus Pseudovibrio were dominant among the bacteria from S. carnosus, whereas Pseudoalteromonas and Vibrio were the dominant genera isolated from Leucosolenia sp. Approximately 50% of the isolates from S. carnosus displayed antibacterial activity, and c. 15% of the isolates from Leucosolenia sp. demonstrated activity against the test fungal strains. The antibacterial activity observed was mostly from Pseudovibrio and Spongiobacter isolates, while the majority of the antifungal activity was observed from the Pseudoalteromonas, Bacillus and Vibrio isolates. Conclusions: Both sponges possess a diverse range of bioactive and potentially novel bacteria. Differences observed from the sponge‐derived groups of isolates in terms of bioactivity suggest that S. carnosus isolates may be a better source of antibacterial compounds, while Leucosolenia sp. isolates appear to be a better source of antifungal compounds. Significance and Impact of the Study: This is the first study in which cultured bacterial isolates from the marine sponges S. carnosus and a Leucosolenia sp. have been evaluated for their antibacterial activity. The high percentage of antibacterial isolates from S. carnosus and of antifungal isolates from Leucosolenia sp. suggests that these two sponges may be good sources for potentially novel marine natural products.  相似文献   

8.
Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.  相似文献   

9.
Sponges (Porifera), as the best known source of bioactive marine natural products in metazoans, play a significant role in marine drug discovery and development. As sessile filter-feeding animals, a considerable portion of the sponge biomass can be made of endosymbiotic and associated microorganisms. Understanding the cellular origin of targeted bioactive compounds from sponges is therefore important not only for providing chemotaxonomic information but also for defining the bioactive production strategy in terms of sponge aquaculture, cell culture, or fermentation of associated bacteria. The two alkaloids debromohymenialdisine (DBH) and hymenialdisine (HD), which are cyclin-dependent kinase inhibitors with pharmacological activities for treating osteoarthritis and Alzheimer's disease, have been isolated from the sponge Axinella sp. In this study, the cellular localization of these two alkaloids was determined through the quantification of these alkaloids in different cell fractions by high-performance liquid chromatography (HPLC). First, using a differential centrifugation method, the dissociated cells were separated into different groups according to their sizes. The two bioactive alkaloids were mainly found in sponge cells obtained from low-speed centrifugation. Further cell purifications were accomplished by a newly developed multi-step protocol. Four enriched cell fractions (C1, C2, C3, and C4) were obtained and subjected to light and transmission electron microscopy, cytochemical staining, and HPLC quantification. Compared to the low concentrations in other cell fractions, DBH and HD accounted for 10.9% and 6.1%, respectively, of dry weight in the C1 fraction. Using the morphological characteristics and cytochemical staining results, cells in the C1 fraction were speculated to be spherulous cells. This result shows that DBH and HD in Axinella sp. are located in sponge cells and mostly stored in spherulous cells.  相似文献   

10.
Aims: Despite the frequent isolation of endospore‐formers from marine sponges, little is known about the diversity and characterization of individual isolates. The main aims of this study were to isolate and characterize the spore‐forming bacteria from the marine sponge Haliclona simulans and to examine their potential as a source for bioactive compounds. Methods and Results: A bank of presumptive aerobic spore‐forming bacteria was isolated from the marine sponge H. simulans. These represented c. 1% of the total culturable bacterial population. A subgroup of thirty isolates was characterized using morphological, phenotypical and phylogenetic analysis. A large diversity of endospore‐forming bacteria was present, with the thirty isolates being distributed through a variety of Bacillus and Paenibacillus species. These included ubiquitous species, such as B. subtilis, B. pumilus, B. licheniformis and B. cereus group, as well as species that are typically associated with marine habitats, such as B. aquimaris, B. algicola and B. hwajinpoensis. Two strains carried the aiiA gene that encodes a lactonase known to be able to disrupt quorum‐sensing mechanisms, and various isolates demonstrated protease activity and antimicrobial activity against different pathogenic indicator strains, including Clostridium perfringens, Bacillus cereus and Listeria monocytogenes. Conclusions: The marine sponge H. simulans harbours a diverse collection of endospore‐forming bacteria, which produce proteases and antibiotics. This diversity appears to be overlooked by culture‐dependent and culture‐independent methods that do not specifically target sporeformers. Significance and Impact of Study: Marine sponges are an as yet largely untapped and poorly understood source of endospore‐forming bacterial diversity with potential biotechnological, biopharmaceutical and probiotic applications. These results also indicate the importance of combining different methodologies for the comprehensive characterization of complex microbial populations such as those found in marine sponges.  相似文献   

11.

Ecological problems associated with current antifouling technologies have increased interest in the natural strategies that marine organisms use to keep their surfaces clean and free from fouling. Bacteria isolated from living surfaces in the marine environment have been shown to produce chemicals that are potential antifoulants. Active compounds from the cells and culture supernatant of two bacterial strains, FS‐55 and NudMB50–11, isolated from surface of the seaweed, Fucus serratus, and the nudibranch, Archidoris pseudoargus, respectively, were extracted using solid phase extraction. The extracts were combined with acrylic base paint resin and assayed for antifouling activity by measuring their ability to inhibit the growth of fouling bacteria. These formulations were found to be active against fouling bacteria isolated from marine surfaces. The formulation of antifouling paints that incorporate marine microbial natural products is reported here for the first time. This is a significant advance towards the production of an environmentally friendly antifouling paint that utilises a sustainable supply of natural biodegradable compounds.  相似文献   

12.
Marine invertebrate animals such as sponges, gorgonians, tunicates and bryozoans are sources of biomedicinally relevant natural products, a small but growing number of which are advancing through clinical trials. Most metazoan and anthozoan species harbour commensal microorganisms that include prokaryotic bacteria, cyanobacteria (blue-green algae), eukaryotic microalgae, and fungi within host tissues where they reside as extra- and intra-cellular symbionts. In some sponges these associated microbes may constitute as much as 40% of the holobiont volume. There is now abundant evidence to suggest that a significant portion of the bioactive metabolites thought originally to be products of the source animal are often synthesized by their symbiotic microbiota. Several anti-cancer metabolites from marine sponges that have progressed to pre-clinical or clinical-trial phases, such as discodermolide, halichondrin B and bryostatin 1, are thought to be products derived from their microbiotic consortia. Freshwater and marine cyanobacteria are well recognised for producing numerous and structurally diverse bioactive and cytotoxic secondary metabolites suited to drug discovery. Sea sponges often contain dominant taxa-specific populations of cyanobacteria, and it is these phytosymbionts (= photosymbionts) that are considered to be the true biogenic source of a number of pharmacologically active polyketides and nonribosomally synthesized peptides produced within the sponge. Accordingly, new collections can be pre-screened in the field for the presence of phytobionts and, together with metagenomic screening using degenerate PCR primers to identify key polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) genes, afford a biodiscovery rationale based on the therapeutic prospects of phytochemical selection. Additionally, new cloning and biosynthetic expression strategies may provide a sustainable method for the supply of new pharmaceuticals derived from the uncultured phytosymbionts of marine organisms.  相似文献   

13.
The synthesis of bioactive compounds with antimicrobial activity, excreted by marine cyanobacteria, strongly depends on their growth conditions. Due to the wide variety of biomolecules which could show properties as growth inhibitors and their low concentrations within the culture medium, the activity of their crude extracts also seems to be related to the extraction method used. Using the marine filamentous cyanobacterium Geitlerinema strain Flo1, we demonstrate a systematic approach for identifying optimal culture conditions to obtain culture media extracts with antimicrobial activity. The changes in the culture conditions, such as the addition of NaBr to the medium, cell immobilisation in vegetable sponge pieces, or temperature, effected the production of these bioactive compounds. The crude extract, containing middle polar molecules, obtained by extraction with Amberlite XAD-1180 had a higher antifouling activity upon a number of bacteria and fungi than the extract obtained by extraction with Amberlite XAD-16. The lowest inhibitory concentration obtained upon Rhodosporidium sphaerocarpum was still ten times higher than that of bis(tributyltin)oxide, but compared to zinc pyrithione, it was two times more active.  相似文献   

14.
Zhang W  Xue S  Zhao Q  Zhang X  Li J  Jin M  Yu X  Yuan Q 《Biomolecular engineering》2003,20(4-6):413-419
An extensive literature survey of over 17 Journals was carried out on Chinese sponges and their natural products in the period from 1980 to 2001. This review is thus intended to provide the first thorough overview of research on marine sponges from China Ocean territories. Information is provided about the rather-limited taxonomic study of Chinese marine sponges, with an analysis on their distribution and diversity. Research findings on the natural products and their bioactivity screening from Chinese sponges are summarized. The weaknesses, gaps and problems in the past R&D program of Chinese sponges are identified, which point to the future opportunities in exploiting these huge untapped sponge resources. The report is expected to serve as an entry point for understanding Chinese sponges and for furthering R&D on their bioactive compounds for new drug development.  相似文献   

15.
Marine actinomycetes provide a rich source of structurally unique and bioactive secondary metabolites. Numerous genera of marine actinomycetes have been isolated from marine sediments as well as several sponge species. In this study, 16 different species of Caribbean sponges were collected from four different locations in the coastal waters off Puerto Rico in order to examine diversity and bioactive metabolite production of marine actinomycetes in Caribbean sponges. Sediments were also collected from each location, in order to compare actinomycete communities between these two types of samples. A total of 180 actinomycetes were isolated and identified based on 16S rRNA gene analysis. Phylogenetic analysis revealed the presence of at least 14 new phylotypes belonging to the genera Micromonospora, Verruscosispora, Streptomyces, Salinospora, Solwaraspora, Microbacterium and Cellulosimicrobium. Seventy-eight of the isolates (19 from sediments and 59 from sponges) shared 100 % sequence identity with Micromonospora sp. R1. Despite having identical 16S rRNA sequences, the bioactivity of extracts and subsequent fractions generated from the fermentation of both sponge- and sediment-derived isolates identical to Micromonospora sp. R1 varied greatly, with a marked increase in antibiotic metabolite production in those isolates derived from sponges. These results indicate that the chemical profiles of isolates with high 16S rRNA sequence homology to known strains can be diverse and dependent on the source of isolation. In addition, seven previously reported dihydroquinones produced by five different Streptomyces strains have been purified and characterized from one Streptomyces sp. strain isolated in this study from the Caribbean sponge Agelas sceptrum.  相似文献   

16.
海绵生物活性物质及海绵细胞离体培养   总被引:12,自引:0,他引:12  
介绍了来自海绵的生物活性物质种类、分布及其潜在的应用价值。讨论了其作为抗癌、抗病毒、抗细菌等药用的生物活性物质及其相关的海绵种属 ;强调海绵生物活性物质的商业化和临床应用所面临的“供给短缺问题”。作为解决这一问题的途径之一 ,海绵细胞离体培养是最有前景的技术。讨论了海绵细胞离体培养技术的研究现状 ,存在的问题及未来的发展趋势。对我国海域的海绵生物活性物质的研究开发现状进行总结 ,强调海绵研究对开发具有我国自主知识产权的新药、新化合物的必要性及重要性 ,并提出进行研发的可能优先领域  相似文献   

17.
Sponge secondary metabolites have been investigated to find potential lead compounds for the development of commercially interesting products. During the Camellia project entitled Environmentally compatible antifouling coatings for the protection of ships, water systems, fish cages and other immersed structures against aquatic growth, several analogues of terpenes containing isocyano, thioisocyano, thiocyano and formamide functionalities were synthesized and evaluated for their antifouling activity against the settlement of the barnacle Balanus amphitrite. The best activities were obtained with N-formylated alkylamines the length of the carbon chain of which is comprised between C-11 and C-14. In the aromatic series, the isocyano derivatives showed high antifouling activities. But they were too toxic against many microorganisms to be incorporated in paint formulations. During the Symbiosponge project entitled Biology of sponge natural products the methanolic extract of about 230 sponges were submitted to bioassays guided fractionation to isolate bioactive compounds. Several cytostatic sesquiterpene quinones and tryptamine-derived alkaloids were isolated from 4 sponges of the genus Hyrtios. A new 4-sphingenine analogue and a novel polyacetylenic derivative were found to be responsible for the bioactivities of the methanolic extracts of Haliclona vansoesti and Callyspongia pseudoreticulata, respectively.  相似文献   

18.
杨晓歌  王国君  李霄 《微生物学报》2018,58(9):1531-1541
海绵体动物分离到的聚酮类化合物很多是由其共生或附生微生物体内的trans-AT聚酮合成酶催化产生的。利用宏基因组技术克隆具有生物活性的聚酮化合物的生物合成基因簇,不但能阐明活性化合物的生物合成路径,而且可以通过异源表达获得目标化合物。本文综述了海绵体动物来源的trans-AT聚酮合成酶产生的聚酮化合物生物合成及其基因簇的研究进展。  相似文献   

19.
The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.  相似文献   

20.
The biosynthesis of non-ribosomal peptide and polyketide natural products is facilitated by multimodular enzymes that contain domains responsible for the sequential condensation of amino and carboxylic subunits. These conserved domains provide molecular targets for the discovery of natural products from microbial metagenomes. This study demonstrates the application of tag-encoded FLX amplicon pyrosequencing (TEFAP) targeting non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) genes as a method for determining the identity and diversity of natural product biosynthesis genes. To validate this approach, we assessed the diversity of NRPS and PKS genes within the microbiomes of six Australian marine sponge species using both TEFAP and metagenomic whole-genome shotgun sequencing approaches. The TEFAP approach identified 100 novel ketosynthase (KS) domain sequences and 400 novel condensation domain sequences within the microbiomes of the six sponges. The diversity of KS domains within the microbiome of a single sponge species Scopalina sp. exceeded that of any previously surveyed marine sponge. Furthermore, this study represented the first to target the condensation domain from NRPS biosynthesis and resulted in the identification of a novel condensation domain lineage. This study highlights the untapped potential of Australian marine sponges for the isolation of novel bioactive natural products. Furthermore, this study demonstrates that TEFAP approaches can be applied to functional genes, involved in natural product biosynthesis, as a tool to aid natural product discovery. It is envisaged that this approach will be used across multiple environments, offering an insight into the biological processes that influence the production of secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号