首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wolosker H  Dumin E  Balan L  Foltyn VN 《The FEBS journal》2008,275(14):3514-3526
The mammalian brain contains unusually high levels of D-serine, a D-amino acid previously thought to be restricted to some bacteria and insects. In the last few years, studies from several groups have demonstrated that D-serine is a physiological co-agonist of the N-methyl D-aspartate (NMDA) type of glutamate receptor -- a key excitatory neurotransmitter receptor in the brain. D-Serine binds with high affinity to a co-agonist site at the NMDA receptors and, along with glutamate, mediates several important physiological and pathological processes, including NMDA receptor transmission, synaptic plasticity and neurotoxicity. In recent years, biosynthetic, degradative and release pathways for D-serine have been identified, indicating that D-serine may function as a transmitter. At first, D-serine was described in astrocytes, a class of glial cells that ensheathes neurons and release several transmitters that modulate neurotransmission. This led to the notion that D-serine is a glia-derived transmitter (or gliotransmitter). However, recent data indicate that serine racemase, the D-serine biosynthetic enzyme, is widely expressed in neurons of the brain, suggesting that D-serine also has a neuronal origin. We now review these findings, focusing on recent questions regarding the roles of glia versus neurons in d-serine signaling.  相似文献   

2.
哺乳动物中枢神经系统中D构象丝氨酸的区域性高浓度分布与N-甲基-D-天冬氨酸(NMDA)受体相一致.它主要由丝氨酸消旋酶将L丝氨酸直接消旋而来,也可能通过肠道菌群产生后吸收至体内,最终被D构象氨基酸氧化酶氧化.这种从胶质细胞而非神经元来源的“异常”构象氨基酸作为一种新型神经递质,不仅更新了传统“神经递质”的定义,而且为许多与NMDA受体过度兴奋或表达下调相关的神经系统疾病治疗提出了新的线索.  相似文献   

3.
D-Amino acids have been known to be present in bacteria for more than 50 years, but only recently they were identified in mammals. The occurrence of D-amino acids in mammals challenge classic concepts in biology in which only L-amino acids would be present or thought to play important roles. Recent discoveries uncovered a role of endogenous D-serine as a putative glial-derived transmitter that regulates glutamatergic neurotransmission in mammalian brain. Free D-serine levels in the brain are about one third of L-serine values and its extracellular concentration is higher than many common L-amino acids. D-Serine occurs in protoplasmic astrocytes, a class of glial cells that ensheath the synapses and modulate neuronal activity. Biochemical and electrophysiological studies suggest that endogenous D-serine is a physiological modulator at the co-agonist site of NMDA-type of glutamate receptors. We previously showed that D-serine is synthesized by a glial serine racemase, a novel enzyme converting L- to D-serine in mammalian brain. The enzyme requires pyridoxal 5'-phosphate and it was the first racemase to be cloned from eucaryotes. Inhibitors of serine racemase have therapeutic implications for pathological processes in which over-stimulation of NMDA receptors takes place, such as stroke and neurodegenerative diseases. Here, we review the role of endogenous D-serine in modulating NMDA neurotransmission, its biosynthetic apparatus and the potential usefulness of serine racemase inhibitors as a novel neuroprotective strategy to decrease glutamate/NMDA excitotoxicity.  相似文献   

4.
D-amino acid oxidase (DAO) is a flavoenzyme that catalyzes the oxidation of D-amino acids. In the brain, gene expression of DAO is detected in astrocytes. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) receptor. In a search for the physiological role of DAO in the brain, we investigated the metabolism of extracellular D-serine in glial cells. Here we show that after D-serine treatment, rat primary type-1 astrocytes exhibited increased cell death. In order to enhance the enzyme activity of DAO in cells, we established stable rat C6 glial cells overexpressing mouse DAO designated as C6/DAO. Treatment with a high dose of D-serine led to the production of hydrogen peroxide (H(2)O(2)) followed by apoptosis in C6/DAO cells. Among the amino acids tested, D-serine specifically exhibited a significant cell death-inducing effect. DAO inhibitors, i.e., sodium benzoate and chlorpromazine, partially prevented the death of C6/DAO cells treated with D-serine, indicating the involvement of DAO activity in d-serine metabolism. Overall, we consider that extracellular D-serine can gain access to intracellular DAO, being metabolized to produce H(2)O(2). These results support the proposal that astroglial DAO plays an important role in metabolizing a neuromodulator, D-serine.  相似文献   

5.
The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics.  相似文献   

6.
Abundant recent evidence favors a neurotransmitter/neuromodulator role for D-serine. D-serine is synthesized from L-serine by serine racemase in astrocytic glia that ensheath synapses, especially in regions of the brain that are enriched in NMDA-glutamate receptors. D-serine is more potent than glycine at activating the 'glycine' site of these receptors. Moreover, selective degradation of D-serine but not glycine by D-amino acid oxidase markedly reduces NMDA neurotransmission. D-serine appears to be released physiologically in response to activation by glutamate of AMPA-glutamate receptors on D-serine-containing glia. This causes glutamate-receptor-interacting protein, which binds serine racemase, to stimulate enzyme activity and D-serine release. Thus, glutamate triggers the release of D-serine so that the two amino acids can act together on postsynaptic NMDA receptors. D-serine also plays a role in neural development, being released from Bergmann glia to chemokinetically enhance the migration of granule cell cerebellar neurons from the external to the internal granular layer.  相似文献   

7.
Mammalian serine racemase is a brain-enriched enzyme that converts L- into D-serine in the nervous system. D-Serine is an endogenous co-agonist at the "glycine site" of N-methyl D-aspartate (NMDA) receptors that is required for the receptor/channel opening. Factors regulating the synthesis of D-serine have implications for the NMDA receptor transmission, but little is known on the signals and events affecting serine racemase levels. We found that serine racemase interacts with the Golgin subfamily A member 3 (Golga3) protein in yeast two-hybrid screening. The interaction was confirmed in vitro with the recombinant proteins in co-transfected HEK293 cells and in vivo by co-immunoprecipitation studies from brain homogenates. Golga3 and serine racemase co-localized at the cytosol, perinuclear Golgi region, and neuronal and glial cell processes in primary cultures. Golga3 significantly increased serine racemase steady-state levels in co-transfected HEK293 cells and primary astrocyte cultures. This observation led us to investigate mechanisms regulating serine racemase levels. We found that serine racemase is degraded through the ubiquitin-proteasomal system in a Golga3-modulated manner. Golga3 decreased the ubiquitylation of serine racemase both in vitro and in vivo and significantly increased the protein half-life in pulse-chase experiments. Our results suggest that the ubiquitin system is a main regulator of serine racemase and D-serine levels. Modulation of serine racemase degradation, such as that promoted by Golga3, provides a new mechanism for regulating brain d-serine levels and NMDA receptor activity.  相似文献   

8.
The NMDA receptor is the most widely studied ionotropic glutamate receptor, and it is central to many physiological and pathophysiological processes in the central nervous system. GluN2A is one of the two main types of GluN2 NMDA receptor subunits in the forebrain. The proper activity of GluN2A is important to brain function, as the abnormal regulation of GluN2A may induce some neuropsychiatric disorders. This review will examine the regulation of GluN2A by endogenous and exogenous regulators in the central nervous system.  相似文献   

9.
De Miranda J  Santoro A  Engelender S  Wolosker H 《Gene》2000,256(1-2):183-188
High levels of D-serine are found in mammalian brain, where it is an endogenous agonist of the strichinine-insensitive site of N-methyl D-aspartate type of glutamate receptors. D-serine is enriched in protoplasmic astrocytes that occur in gray matter areas of the brain and was shown to be synthesized from L-serine. We now report cloning and expression of human serine racemase, an enzyme that catalyses the synthesis of D-serine from L-serine. The enzyme displays a high homology to the murine serine racemase. It contains a pyridoxal 5'-phosphate attachment sequence similar to bacterial biosynthetic threonine dehydratase. Northern-blot analysis show high levels of human serine racemase in areas known to contain large amounts of endogenous D-serine, such as hippocampus and corpus callosum. Robust synthesis of D-serine was detected in cells transfected with human serine racemase, demonstrating the conservation of D-amino acid metabolism in humans. Serine racemase may be a therapeutic target in psychiatric diseases as supplementation of D-serine greatly improves schizophrenia symptoms. We identify the human serine racemase genomic structure and show that the gene encompasses seven exons and localizes to chromosome 17q13.3. Identification of the intron-exon boundaries of the human serine racemase gene will be useful to search for mutations in neuropsychiatric disorders.  相似文献   

10.
Glia-derived D-serine controls NMDA receptor activity and synaptic memory   总被引:11,自引:0,他引:11  
The NMDA receptor is a key player in excitatory transmission and synaptic plasticity in the central nervous system. Its activation requires the binding of both glutamate and a co-agonist like D-serine to its glycine site. As D-serine is released exclusively by astrocytes, we studied the physiological impact of the glial environment on NMDA receptor-dependent activity and plasticity. To this end, we took advantage of the changing astrocytic ensheathing of neurons occurring in the supraoptic nucleus during lactation. We provide direct evidence that in this hypothalamic structure the endogenous co-agonist of NMDA receptors is D-serine and not glycine. Consequently, the degree of astrocytic coverage of neurons governs the level of glycine site occupancy on the NMDA receptor, thereby affecting their availability for activation and thus the activity dependence of long-term synaptic changes. Such a contribution of astrocytes to synaptic metaplasticity fuels the emerging concept that astrocytes are dynamic partners of brain signaling.  相似文献   

11.
D-serine is a coagonist of N-methyl-D-aspartate (NMDA) receptors that occurs at high levels in the brain. Biosynthesis of D-serine is carried out by serine racemase, which converts L- to D-serine. D-serine has been demonstrated to occur in glial cells, leading to the proposal that astrocytes are the only source of D-serine. We now report significant amounts of serine racemase and D-serine in primary neuronal cultures and neurons in vivo. Several neuronal culture types expressed serine racemase, and D-serine synthesis was comparable with that in glial cultures. Immunohistochemical staining of brain sections with new antibodies revealed the presence of serine racemase and D-serine in neurons. Cortical neurons expressing serine racemase also expressed the NR2a subunit in situ. Neuron-derived D-serine contributes to NMDA receptor activation in cortical neuronal cultures. Degradation of endogenous D-serine by addition of the recombinant enzyme D-serine deaminase diminished NMDA-elicited excitotoxicity. Release of neuronal D-serine was mediated by ionotropic glutamate receptor agonists such as NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid, and kainate. Removal of either external Ca2+ or Na+ blocked D-serine release. Release of D-serine was mostly through a cytosolic route because it was insensitive to bafilomycin A1, a potent inhibitor of vesicular neurotransmitter uptake. D-serine was also not transported into purified synaptic vesicles under conditions optimal for the uptake of known transmitters. Our results suggest that neurons are a major source of D-serine. Glutamate-induced neuronal D-serine release provides a novel mechanism for activating NMDA receptors by an autocrine or paracrine way.  相似文献   

12.
D-Amino Acids as Putative Neurotransmitters: Focus on D-Serine   总被引:2,自引:0,他引:2  
Of the twenty amino acids in the mammalian body, only serine and aspartate occur in D-configuration as well as L-configuration in significant amount. D-serine is selectively concentrated in the brain, localized to protoplasmic astrocytes that ensheath synapses and distributed similarly to N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. D-serine has been found to function as an endogenous ligand for the glycine site of the NMDA receptor. Evidences for this include the greater potency of D-serine to activate this site than glycine, and D-amino acid oxidase, which degrades D-serine as well as other neutral D-amino acids, markedly attenuates NMDA neurotransmission. D-serine is also formed by serine racemase, a recently cloned enzyme that converts L-serine to D-serine. Thus, in many ways D-serine fulfills criteria for defining its functionality as a neurotransmitter and challenges the dogma relating to neurotransmission, for it is the unnatural isomeric form of an amino acid derived from glia rather than neurons.  相似文献   

13.
The N-methyl-D-aspartate receptor (NMDAR) co-agonist D-serine is important in a number of different processes in the CNS, ranging from synaptic plasticity to disease states, including schizophrenia. D-serine appears to be the major co-agonist acting on retinal ganglion cell NMDA receptors, but the cell type from which it originates and whether its release can be modulated by activity are unknown. In this study, we utilized a mutant mouse line with elevated d-serine to investigate this question. Direct measurements of extracellular D-serine using capillary electrophoresis demonstrate that D-serine can be released from the intact mouse retina through an α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent mechanism. α-Amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-evoked D-serine release persisted in the presence of a cocktail of neural inhibitors but was abolished after administration of a glial toxin. These findings provide the first evidence that extracellular D-serine levels in the retina can be modulated, and that such modulation is contingent upon glial cell activity.  相似文献   

14.
Mammalian brain contains high levels of d-serine, an endogenous co-agonist of N-methyl D-aspartate type of glutamate receptors. D-Serine is synthesized by serine racemase, a brain enriched enzyme converting L- to D-serine. Degradation of D-serine is achieved by D-amino acid oxidase, but this enzyme is not present in forebrain areas that are highly enriched in D-serine. We now report that serine racemase catalyzes the degradation of cellular D-serine itself, through the alpha,beta-elimination of water. The enzyme also catalyzes water alpha,beta-elimination with L-serine and L-threonine. alpha,beta-Elimination with these substrates is observed both in vitro and in vivo. To investigate further the role of alpha,beta-elimination in regulating cellular D-serine, we generated a serine racemase mutant displaying selective impairment of alpha,beta-elimination activity (Q155D). Levels of D-serine synthesized by the Q155D mutant are several-fold higher than the wild-type both in vitro and in vivo. This suggests that the alpha,beta-elimination reaction limits the achievable D-serine concentration in vivo. Additional mutants in vicinal residues (H152S, P153S, and N154F) similarly altered the partition between the alpha,beta-elimination and racemization reactions. alpha,beta-Elimination also competes with the reverse serine racemase reaction in vivo. Although the formation of L- from D-serine is readily detected in Q155D mutant-expressing cells incubated with physiological D-serine concentrations, reversal with wild-type serine racemase-expressing cells required much higher D-serine concentration. We propose that alpha,beta-elimination provides a novel mechanism for regulating intracellular D-serine levels, especially in brain areas that do not possess D-amino acid oxidase activity. Extracellular D-serine is more stable toward alpha,beta-elimination, likely due to physical separation from serine racemase and its elimination activity.  相似文献   

15.
N-methyl-D-aspartate (NMDA) receptors, whose activation requires glycine site stimulation, play crucial roles in various physiological and pathological conditions in the brain. We investigated the regulatory roles of potential endogenous glycine site agonists, glycine and d-serine, in excitotoxic and ischemic cell death in the cerebral cortex. Cytotoxicity of NMDA on rat cerebrocortical slice cultures was potentiated by addition of glycine or d-serine. In contrast, cell death induced by oxygen/glucose deprivation (OGD) was not affected by exogenous glycine or d-serine, although blockade of NMDA receptors by MK-801 abolished cell death. In addition, higher concentrations of 2,7-dichlorokynurenic acid (DCKA), a competitive glycine site antagonist, were required to suppress OGD-induced cell death than those to suppress NMDA cytotoxicity. We also found that OGD triggered a robust increase in extracellular glycine. A glycine transporter blocker ALX 5407 increased the extracellular level of glycine, and the protective effect of DCKA against NMDA cytotoxicity was diminished in the presence of ALX 5407. Sensitivity of NMDA cytotoxicity to DCKA was also diminished by l-serine that increased the extracellular level of d-serine. These results indicate that both glycine and d-serine can act as endogenous ligands for NMDA receptor glycine site in the cerebral cortex, and that endogenous glycine may saturate the glycine site under ischemic conditions. The present findings are important for the interpretation of the mechanisms of NMDA and OGD cytotoxicity.  相似文献   

16.
d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor, plays an important role in mammalian brain neurotransmission, via the NMDA receptor. d-Serine is synthesized from l-serine by the pyridoxal-5′ phosphate-dependent enzyme serine racemase (SRR), and d-serine is metabolized by d-amino acid oxidase (DAAO). In this study, we measured levels of the neurotransmission related amino acids, d-serine, l-serine, glycine, glutamine and glutamate in the frontal cortex, hippocampus, striatum and cerebellum as well as in peripheral tissues of blood, heart, pancreas, spleen, liver, kidney, testis, epididymis, heart, lung, muscle and eyeball, in wild-type (WT) and Srr-knockout (Srr-KO) mice. Levels of d-serine in the frontal cortex, hippocampus, and striatum of Srr-KO mice were significantly lower than in WT mice, while levels in the cerebellum stayed the same. In contrast, levels of l-serine, glycine, glutamine and glutamate remained the same in all tested brain regions. In vivo microdialysis using free-moving mice showed that extracellular levels of d-serine in the hippocampus of Srr-KO mice were significantly lower than in WT mice while the other amino acid levels remained the same between mice. In peripheral organs, levels of d-serine in the kidney, testis, and muscle of Srr-KO mice were significantly lower than in WT mice. Tissue levels of the other tested amino acids in peripheral organs were not altered. These results suggest that SRR is the major enzyme responsible for d-serine production in the mouse forebrain, and that other pathways of d-serine production may exist in the brain and peripheral organs.  相似文献   

17.
There is a considerable amount of conflicting evidence from several studies as to the action of applied N-methyl-D-aspartate (NMDA) on the release of glutamate and aspartate in the brain. In the present study the effect of NMDA on extracellular levels of endogenous amino acids was investigated in conscious, unrestrained rats using intracerebral microdialysis. NMDA caused dose-related increases in extracellular levels of glutamate and aspartate; threonine and glutamine were unaffected. The NMDA-evoked release of glutamate and aspartate was significantly decreased by the specific NMDA receptor antagonist 3-[(+-)-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid. In addition, increasing the perfusate concentration (and therefore the extracellular concentration) of Ca2+ significantly enhanced the NMDA-evoked release of glutamate and aspartate, whereas removal of Ca2+ and addition of a high Mg2+ concentration to the perfusate caused a significant reduction in their NMDA-evoked release. Moreover, the NMDA-evoked release of glutamate and aspartate was reduced in decorticate animals. These results demonstrate that, in the striatum in vivo, NMDA causes selective release of endogenous glutamate and aspartate from neurone terminals and that this action occurs through an NMDA receptor-mediated mechanism. The ability of NMDA receptor activation to induce release of glutamate and aspartate, perhaps by a positive feedback mechanism, may be relevant to the pathologies underlying epilepsy and ischaemic and hypoglycaemic brain damage.  相似文献   

18.
Single unit extracellular recordings from dorsal horn neurons were performed with glass micropipettes in pentobarbital-anesthetized rats. A total of 60 wide dynamic range (WDR) neurons were obtained from 34 rats. In normal rats (20/34), spinally administered D-serine (10 nmol), a putative endogenous agonist of glycine site of NMDA receptors, significantly enhanced the C- but not Abeta-, and Adelta-fiber responses of WDR neurons in the spinal dorsal horn. When 1 nmol of the glycine site antagonist 7-chlorokynurenic acid (7-CK) was co-administered with 10 nmol D-serine, the facilitation of D-serine on C-fiber response was completely blocked. 7-CK (1 nmol) alone failed to influence Abeta-, Adelta-, and C-fiber responses of WDR neurons. In contrast, in carrageenan-injected rats (14/34), 10 nmol D-serine had no effect on C-fiber response, while 1 nmol 7-CK per se markedly depressed C-fiber response of WDR neurons. These findings suggest that under physiological conditions, glycine sites in the spinal cord were available but became saturated following peripheral inflammation. Thus, increased endogenous d-serine or glycine may be involved in nociceptive transmission by modulating NMDA receptor activities. The glycine site of NMDA receptors may become a target for the prevention of inflammatory pain.  相似文献   

19.
The effects of the co-agonist of the N-methyl-D-aspartate receptor (NMDAr) D-serine on glutamatergic neurotransmission and synaptic potentiation were studied in the CA1 hippocampal field of young (3-5 months old) and aged (25-27 months old) Sprague-Dawley rats using ex vivo extracellular electrophysiological recording techniques. Exogenous d-serine depressed fast neurotransmission mediated by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate subtype of glutamate receptors in young but not in aged rats by acting on inhibitory glycinergic interneurons. In contrast, D-serine dose-dependently enhanced NMDAr-mediated synaptic responses in both groups of animals, but with a larger magnitude in aged rats, thus preventing the age-related decrease in NMDAr activation. D-serine also increased the magnitude of long-term potentiation in aged but not in young rats. Finally, D-serine levels were dramatically reduced in hippocampal tissues of aged rats. Taken together, these results indicate a weaker activation of the NMDAr glycine modulatory site by endogenous D-serine in aged animals, which accounts for a reduced NMDAr contribution to synaptic plasticity in ageing.  相似文献   

20.
It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号