首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The first experimental evidence of a tight binding iron(II)-CDO complex is presented. These data enabled the relationship between iron bound and activity to be explicitly proven. Cysteine dioxygenase (CDO) from Rattus norvegicus has been expressed and purified with ~0.17 Fe/polypeptide chain. Following addition of exogenous iron, iron determination using the ferrozine assay supported a very tight stoichiometric binding of iron with an extremely slow rate of dissociation, k(off) ~ 1.7 × 10(-6) s(-1). Dioxygenase activity was directly proportional to the concentration of iron. A rate of cysteine binding to iron(III)-CDO was also measured. M?ssbauer spectra show that in its resting state CDO binds the iron as high-spin iron(II). This iron(II) active site binds cysteine with a dissociation constant of ~10 mM but is also able to bind homocysteine, which has previously been shown to inhibit the enzyme.  相似文献   

2.
Mammalian cysteine dioxygenase (CDO) is a non-heme iron metalloenzyme that catalyzes the first committed step in oxidative cysteine catabolism. The active site coordination of CDO comprises a mononuclear iron ligated by the Nepsilon atoms of three protein-derived histidines, thus representing a new variant on the 2-histidine-1-carboxylate (2H1C) facial triad motif. Nitric oxide was used as a spectroscopic probe in investigating the order of substrate-O2 binding by EPR spectroscopy. In these experiments, CDO exhibits an ordered binding of l-cysteine prior to NO (and presumably O2) similar to that observed for the 2H1C class of non-heme iron enzymes. Moreover, the CDO active site is essentially unreactive toward NO in the absence of substrate, suggesting an obligate ordered binding of l-cysteine prior to NO. Typically, addition of NO to a mononuclear non-heme iron center results in the formation of an {FeNO}7 (S = 3/2) species characterized by an axial EPR spectrum with gx, gy, and gz values of approximately 4, approximately 4, and approximately 2, respectively. However, upon addition of NO to CDO in the presence of substrate l-cysteine, a low-spin {FeNO}7 (S = 1/2) signal that accounts for approximately 85% of the iron within the enzyme develops. Similar {FeNO}7 (S = 1/2) EPR signals have been observed for a variety of octahedral mononuclear iron-nitrosyl synthetic complexes; however, this type of iron-nitrosyl species is not commonly observed for non-heme iron enzymes. Substitution of l-cysteine with isosteric substrate analogues cysteamine, 3-mercaptopropionic acid, and propane thiol did not produce any analogous {FeNO}7 signals (S = 1/2 or 3/2), thus reflecting the high substrate specificity of the enzyme observed by a number of researchers. The unusual {FeNO}7 (S = 1/2) electronic configuration adopted by the substrate-bound iron-nitrosyl CDO (termed {ES-NO}7) is a result of the bidentate thiol/amine coordination of l-cysteine in the NO-bound CDO active site. DFT computations were performed to further characterize this species. The DFT-predicted geometric parameters for {ES-NO}7 are in good agreement with the crystallographically determined substrate-bound active site configuration of CDO and are consistent with known iron-nitrosyl model complexes. Moreover, the computed EPR parameters (g and A values) are in excellent agreement with experimental results for this CDO species and those obtained from comparable synthetic {FeNO}7 (S = 1/2) iron-nitrosyl complexes.  相似文献   

3.
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and M?ssbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and M?ssbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.  相似文献   

4.
Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin (BH(4)) and non-heme iron-dependent enzyme that hydroxylates L-Phe to L-Tyr. The paramagnetic ferric iron at the active site of recombinant human PAH (hPAH) and its midpoint potential at pH 7.25 (E(m)(Fe(III)/Fe(II))) were studied by EPR spectroscopy. Similar EPR spectra were obtained for the tetrameric wild-type (wt-hPAH) and the dimeric truncated hPAH(Gly(103)-Gln(428)) corresponding to the "catalytic domain." A rhombic high spin Fe(III) signal with a g value of 4.3 dominates the EPR spectra at 3.6 K of both enzyme forms. An E(m) = +207 +/- 10 mV was measured for the iron in wt-hPAH, which seems to be adequate for a thermodynamically feasible electron transfer from BH(4) (E(m) (quinonoid-BH(2)/BH(4)) = +174 mV). The broad EPR features from g = 9.7-4.3 in the spectra of the ligand-free enzyme decreased in intensity upon the addition of L-Phe, whereas more axial type signals were observed upon binding of 7,8-dihydrobiopterin (BH(2)), the stable oxidized form of BH(4), and of dopamine. All three ligands induced a decrease in the E(m) value of the iron to +123 +/- 4 mV (L-Phe), +110 +/- 20 mV (BH(2)), and -8 +/- 9 mV (dopamine). On the basis of these data we have calculated that the binding affinities of L-Phe, BH(2), and dopamine decrease by 28-, 47-, and 5040-fold, respectively, for the reduced ferrous form of the enzyme, with respect to the ferric form. Interestingly, an E(m) value comparable with that of the ligand-free, resting form of wt-hPAH, i.e. +191 +/- 11 mV, was measured upon the simultaneous binding of both L-Phe and BH(2), representing an inactive model for the iron environment under turnover conditions. Our findings provide new information on the redox properties of the active site iron relevant for the understanding of the reductive activation of the enzyme and the catalytic mechanism.  相似文献   

5.
Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) from Pseudomonas aeruginosa has been investigated by EPR and M?ssbauer spectroscopy. Low temperature M?ssbauer data on the native enzyme (Fe3+, S = 5/2) yields a hyperfine field Hsat=-525 kG at the nucleus. This observation is inconsistent with earlier suggestions, based on EPR data of a rubredoxin-like ligand environment around the iron, i.e. a tetrahedral sulfur coordination. Likewise, the dithionite-reduced enzyme has M?ssbauer parameters unlike those of reduced rubredoxin. We conclude that the iron atoms are in a previously unrecognized environment. The ternary complex of the enzyme with 3,4-dihydroxyphenylpropionate and O2 yields EPR signals at g = 6.7 and g = 5.3; these signals result from an excited state Kramers doublet. The kinetics of the disappearance of these signals parallels product formation and the decay of the ternary complex as observed in the optical spectrum. The M?ssbauer and EPR data on the ternary complex establish the iron atoms to be a high-spin ferric state characterized by a large and negative zero-field splitting, D = approximately -2 cm-1.  相似文献   

6.
Chlorite dismutase (EC 1.13.11.49), an enzyme capable of reducing chlorite to chloride while producing molecular oxygen, has been characterized using EPR and optical spectroscopy. The EPR spectrum of GR-1 chlorite dismutase shows two different high-spin ferric heme species, which we have designated 'narrow' (gx,y,z = 6.24, 5.42, 2.00) and 'broad' (gz,y,x = 6.70, 5.02, 2.00). Spectroscopic evidence is presented for a proximal histidine co-ordinating the heme iron center of the enzyme. The UV/visible spectrum of the ferrous enzyme and EPR spectra of the ferric hydroxide and imidazole adducts are characteristic of a heme protein with an axial histidine co-ordinating the iron. Furthermore, the substrate analogs nitrite and hydrogen peroxide have been found to bind to ferric chlorite dismutase. EPR spectroscopy of the hydrogen peroxide adduct shows the loss of both high-spin and low-spin ferric signals and the appearance of a sharp radical signal. The NO adduct of the ferrous enzyme exhibits a low-spin EPR signal typical of a five-co-ordinate heme iron nitrosyl adduct. It seems that the bond between the proximal histidine and the iron is weak and can be broken upon binding of NO. The midpoint potential, Em(Fe3+/2+) = -23 mV, of chlorite dismutase is higher than for most heme enzymes. The spectroscopic features and redox properties of chlorite dismutase are more similar to the gas-sensing hemoproteins, such as guanylate cyclase and the globins, than to the heme enzymes.  相似文献   

7.
EPR was used to study the influence of formate on the electron acceptor side of photosystem II (PSII) from Thermosynechococcus elongatus. Two new EPR signals were found and characterized. The first is assigned to the semiquinone form of Q(B) interacting magnetically with a high spin, non-heme-iron (Fe2(+), S=2) when the native bicarbonate/carbonate ligand is replaced by formate. This assignment is based on several experimental observations, the most important of which were: (i) its presence in the dark in a significant fraction of centers, and (ii) the period-of-two variations in the concentration expected for Q(B)(?-) when PSII underwent a series of single-electron turnovers. This signal is similar but not identical to the well-know formate-modified EPR signal observed for the Q(A)(?-)Fe2(+) complex (W.F.J. Vermaas and A.W. Rutherford, FEBS Lett. 175 (1984) 243-248). The formate-modified signals from Q(A)(?-)Fe2(+) and Q(B)(?-)Fe2(+) are also similar to native semiquinone-iron signals (Q(A)(?-)Fe2(+)/Q(B)(?-)Fe2(+)) seen in purple bacterial reaction centers where a glutamate provides the carboxylate ligand to the iron. The second new signal was formed when Q(A)(?-) was generated in formate-inhibited PSII when the secondary acceptor was reduced by two electrons. While the signal is reminiscent of the formate-modified semiquinone-iron signals, it is broader and its main turning point has a major sub-peak at higher field. This new signal is attributed to the Q(A)(?-)Fe2(+) with formate bound but which is perturbed when Q(B) is fully reduced, most likely as Q(B)H? (or possibly Q(B)H(?-) or Q(B)(2?-)). Flash experiments on formate-inhibited PSII monitoring these new EPR signals indicate that the outcome of charge separation on the first two flashes is not greatly modified by formate. However on the third flash and subsequent flashes, the modified Q(A)(?-)Fe2(+)Q(B)H? signal is trapped in the EPR experiment and there is a marked decrease in the quantum yield of formation of stable charge pairs. The main effect of formate then appears to be on Q(B)H? exchange and this agrees with earlier studies using different methods.  相似文献   

8.
Each R2 subunit of mammalian ribonucleotide reductase contains a pair of high spin ferric ions and a tyrosyl free radical essential for activity. To study the mechanism of tyrosyl radical formation, substoichiometric amounts of Fe(II) were added to recombinant mouse R2 apoprotein under strictly anaerobic conditions and then the solution was exposed to air. Low temperature EPR spectroscopy showed that the signal from the generated tyrosyl free radical correlated well with the quantity of the Fe(II) added with a stoichiometry of 3 Fe(II) needed to produce 1 tyrosyl radical: 3 Fe(II) + P + O2 + Tyr-OH + H+----Fe(III)O2-Fe(III)-P + H2O. + Tyr-O. + Fe(III), where P is an iron-binding site of protein R2 and Tyr-OH is the active tyrosyl residue. The O-O bond of a postulated intermediate O2(2-)-Fe(III)2-P state is cleaved by the extra electron provided by Fe(II) leading to formation of OH., which in turn reacts with Tyr-OH to give Tyr-O.. In the presence of ascorbate, added to reduce the monomeric Fe(III) formed, 80% of the Fe(II) added produced a radical. The results strongly indicate that each dimeric Fe(III) center during its formation can generate a tyrosyl-free radical and that iron binding to R2 apoprotein is highly cooperative.  相似文献   

9.
The quinone-iron complex of the electron acceptor complex of Photosystem II was studied by EPR spectroscopy in Thermosynechococcus elongatus. New g ~ 2 features belonging to the EPR signal of the semiquinone forms of the primary and secondary quinone, i.e., Q(A)(?-)Fe(2+) and Q(B)(?-)Fe(2+), respectively, are reported. In previous studies, these signals were missed because they were obscured by the EPR signal arising from the stable tyrosyl radical, TyrD(?). When the TyrD(?) signal was removed, either by chemical reduction or by the use of a mutant lacking TyrD, the new signals dominated the spectrum. For Q(A)(?-)Fe(2+), the signal was formed by illumination at 77 K or by sodium dithionite reduction in the dark. For Q(B)(?-)Fe(2+), the signal showed the characteristic period-of-two variations in its intensity when generated by a series of laser flashes. The new features showed relaxation characteristics comparable to those of the well-known features of the semiquinone-iron complexes and showed a temperature dependence consistent with an assignment to the low-field edge of the ground state doublet of the spin system. Spectral simulations are consistent with this assignment and with the current model of the spin system. The signal was also present in Q(B)(?-)Fe(2+) in plant Photosystem II, but in plants, the signal was not detected in the Q(A)(?-)Fe(2+) state.  相似文献   

10.
The nonheme iron oxidase isopenicillin N synthase catalyzes the formation of two new internal bonds in the tripeptide delta-(L-alpha-aminoadipoyl)-L-cysteinyl-D-valine (ACV) to form the beta-lactam and thiazolidine rings of isopenicillin N. Concomitantly, O2 is reduced to 2 H2O. The recombinant enzyme from Cephalosporium acremonium (Mr = 38,400), expressed as an apoenzyme in Escherichia coli, binds 1 g atom of Fe2+/mol of enzyme to reconstitute full activity. M?ssbauer spectra of the 57Fe-enriched enzyme exhibit parameters (delta = 1.30 mm/s, delta EQ = 2.70 mm/s) which unambiguously show that the active site iron is high spin Fe2+. Anaerobic binding of ACV causes a substantial decrease in the isomer shift parameter delta (delta = 1.10 mm/s, delta EQ = 3.40 mm/s) showing that the substrate perturbs the iron site and makes its coordination environment much more covalent. Nitric oxide (NO) binds to the EPR silent active site iron to give an EPR active species (g = 4.09, 3.95, 2.0; S = 3/2) similar to those of the nitrosyl complexes of many other mononuclear Fe2+-containing enzymes. The rhombicity of the EPR spectrum is increased (g = 4.22, 3.81, 1.99) by anaerobic addition of ACV suggesting that the substrate binds to or near the iron without displacing NO. Interestingly, the enzyme.ACV.NO complex displays an optical spectrum similar to that of ferric rubredoxin in which the iron has only thiol coordination. This suggests that the Fe2+ of the enzyme.ACV.NO complex acquires Fe3+ character and that the cysteinyl thiol moiety of ACV coordinates to the iron. Similar substrate thiol coordination to the iron of the enzyme.ACV complex is the most probable explanation for the large decrease in isomer shift observed. These results provide the first evidence for the direct involvement of iron in this unique O2-dependent reaction and suggest novel roles for iron and oxygen in biological catalysis.  相似文献   

11.
Recombinant human serum albumin (rHSA) incorporating 2-[8-[N-(2-methylimidazolyl)]octanoyloxymethyl]-5,10,15,20-tetrakis(alpha,alpha,alpha,alpha-o-pivalamido)phenylporphinatoiron(II)s (Fe(II)Ps) [rHSA-Fe(II)P] is a synthetic hemoprotein which can bind and release O(2) reversibly under physiological conditions (saline solution [NaCl]: 150 mM, pH 7.3) as do hemoglobin and myoglobin. However, the central ferrous ions of Fe(II)Ps are slowly oxidized to O(2)-inactive ferric forms. Based on the UV-vis. absorption spectroscopy, the majority of the autooxidized Fe(III)Ps in albumin are determined to be six-coordinate high-spin complexes with a proximal imidazole and a chloride anion, which show ligand-to-metal charge transfer (LMCT) absorption at 330 nm. Interestingly, photoirradiation of this LMCT band under an argon atmosphere led to reduction of the central ferric iron of Fe(III)P, allowing the revival of the O(2)-binding ability. The ratio of the photoreduction reached a maximum of 83%, which is probably due to the partial dissociation of the axial imidazole. The same photoirradiation under a CO atmosphere provides the corresponding carbonyl rHSA-Fe(II)P. Laser flash photolysis experiments revealed that the reduction was completed within 100 ns. The quantum yields (Phi) of these photoreductions were approximately 0.01.  相似文献   

12.
A current hypothesis explaining the toxicity of superoxide anion in vivo is that it oxidizes exposed [4Fe-4S] clusters in certain vulnerable enzymes causing release of iron and enzyme inactivation. The resulting increased levels of "free iron" catalyze deleterious oxidative reactions in the cell. In this study, we used low temperature Fe(III) electron paramagnetic resonance (EPR) spectroscopy to monitor iron status in whole cells of the unicellular eukaryote, Saccharomyces cerevisiae. The experimental protocol involved treatment of the cells with desferrioxamine, a cell-permeant, Fe(III)-specific chelator, to promote oxidation of all of the "free iron" to the Fe(III) state wherein it is EPR-detectable. Using this method, a small amount of EPR-detectable iron was detected in the wild-type strain, whereas significantly elevated levels were found in strains lacking CuZn-superoxide dismutase (CuZn-SOD) (sod1 delta), Mn-SOD (sod2 delta), or both SODs, throughout their growth but particularly in stationary phase. The accumulation was suppressed by expression of wild-type human CuZn-SOD (in the sod1 delta mutant), by pmr1, a genetic suppressor of the sod delta mutant phenotype (in the sod1 delta sod2 delta double knockout strain), and by anaerobic growth. In wild-type cells, an increase in the EPR-detectable iron pool could be induced by treatment with paraquat, a redox-cycling drug that generates superoxide. Cells that were not pretreated with desferrioxamine had Fe(III) EPR signals that were equally as strong as those from treated cells, indicating that "free iron" accumulated in the ferric form in our strains in vivo. Our results indicate a relationship between superoxide stress and iron handling and support the above hypothesis for superoxide-related oxidative damage.  相似文献   

13.
EPR spectroscopic and chemical analyses of spinach nitrite reductase show that the enzyme contains one reducible iron-sulfur center, and one site for binding either cyanide or nitrite, per siroheme. The heme is nearly all in the high spin ferric state in the enzyme as isolated. The extinction coefficient of the enzyme has been revised to E386 = 7.6 X 10(4) cm-1 (M heme)-1. The iron-sulfur center is reduced with difficulty by agents such as reduced methyl viologen (equilibrated with 1 atm of H2 at pH 7.7 in the presence of hydrogenase) or dithionite. Complexation of the enzyme with CO (a known ligand for nitrite reductase heme) markedly increases the reducibility of the iron-sulfur center. New chemical analyses and reinterpretation of previous data show that the enzyme contains 6 mol of iron and 4 mol of acid-labile S2-/mol of siroheme. The EPR spectrum of reduced nitrite reductase in 80% dimethyl sulfoxide establishes clearly that the enzyme contains a tetranuclear iron-sulfur (Fe4S4) center. The ferriheme and Fe4S4 centers are reduced at similar rates (k = 3 to 4 s-1) by dithionite. The dithionite-reduced Fe4S4 center is rapidly (k = 100 s-1) reoxidized by nitrite. These results indicate a role for the Fe4S4 center in catalysis.  相似文献   

14.
Liu P  Liu A  Yan F  Wolfe MD  Lipscomb JD  Liu HW 《Biochemistry》2003,42(40):11577-11586
The last step of the biosynthesis of fosfomycin, a clinically useful antibiotic, is the conversion of (S)-2-hydroxypropylphosphonic acid (HPP) to fosfomycin. Since the ring oxygen in fosfomycin has been shown in earlier feeding experiments to be derived from the hydroxyl group of HPP, this oxirane formation reaction is effectively a dehydrogenation process. To study this unique C-O bond formation step, we have overexpressed and purified the desired HPP epoxidase. Results reported herein provided initial biochemical evidence revealing that HPP epoxidase is an iron-dependent enzyme and that both NAD(P)H and a flavin or flavoprotein reductase are required for its activity. The 2 K EPR spectrum of oxidized iron-reconstituted fosfomycin epoxidase reveals resonances typical of S = (5)/(2) Fe(III) centers in at least two environments. Addition of HPP causes a redistribution with the appearance of at least two additional species, showing that the iron environment is perturbed. Exposure of this sample to NO elicits no changes, showing that the iron is nearly all in the Fe(III) state. However, addition of NO to the Fe(II) reconstituted enzyme that has not been exposed to O(2) yields an intense EPR spectrum typical of an S = (3)/(2) Fe(II)-NO complex. This complex is also heterogeneous, but addition of substrate converts it to a single, homogeneous S = (3)/(2) species with a new EPR spectrum, suggesting that substrate binds to or near the iron, thereby organizing the center. The fact that NO binds to the ferrous center suggests O(2) can also bind at this site as part of the catalytic cycle. Using purified epoxidase and (18)O isotopic labeled HPP, the retention of the hydroxyl oxygen of HPP in fosfomycin was demonstrated. While ether ring formation as a result of dehydrogenation of a secondary alcohol has precedence in the literature, these catalyses require alpha-ketoglutarate for activity. In contrast, HPP epoxidase is alpha-ketoglutarate independent. Thus, the cyclization of HPP to fosfomycin clearly represents an intriguing conversion beyond the scope entailed by common biological epoxidation and C-O bond formation.  相似文献   

15.
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.  相似文献   

16.
Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-Ia RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Ct R2, two different Mn(IV)Fe(III) site configurations were assigned either L(4)Mn(IV)(μO)(2)Fe(III)L(4) (metal-metal distance of ~2.75?, L = ligand) prevailing in metal-grown R2, or L(4)Mn(IV)(μO)(μOH)Fe(III)L(4) (~2.90?) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (~2.55?) with a L(4)Fe(IV)(μO)(2)Fe(III)L(3) core structure. Several Mn,Fe(III)Fe(III) (~2.9-3.1?) and Mn,Fe(III)Fe(II) species (~3.3-3.4?) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit R1. In Ct R2, the protonation of a bridging oxide in the Mn(IV)(μO)(μOH)Fe(III) core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.  相似文献   

17.
Conclusive evidence is presented for an S = 1/2 spincoupled pair of high spin ferric and ferrous ions in the major reaction product of sulfide with the met form of the non-heme iron oxygen-carrying protein hemerythrin. Evidence for an analogous selenide derivative is also reported. M?ssbauer and EPR spectroscopy establish (a) the charge and spin states of the individual iron atoms in sulfidehemerythrin as Fe(III), S = 5/2, and Fe(II), S = 2, and (b) the existence of an antiferromagnetic exchange interaction that couples the two spins to a resultant spin S = 1/2. The combined M?ssbauer and EPR data confirm the correctness of the formulation first proposed for semi-methemerythrin by Harrington, P.C., de Waal, D.J.A., and Wilkins, R.G. ((1978) Arch. Biochem. Biophys. 191, 444-451) and furthermore show that a majority of the iron centers in the protein can be stabilized at this oxidation level. The results also demonstrate a new route to semi-methemerythrin. A titration of methemerythrin with selenide indicates that this derivative forms by a two step process consisting of first, reduction to the semi-met oxidation level by selenide and second, binding of selenide to either one or both irons.  相似文献   

18.
Yah1p, an [Fe 2S 2]-containing ferredoxin located in the matrix of Saccharomyces cerevisiae mitochondria, functions in the synthesis of Fe/S clusters and heme a prosthetic groups. EPR, Mossbauer spectroscopy, and electron microscopy were used to characterize the Fe that accumulates in Yah1p-depleted isolated intact mitochondria. Gal- YAH1 cells were grown in standard rich media (YPD and YPGal) under O 2 or argon atmospheres. Mitochondria were isolated anaerobically, then prepared in the as-isolated redox state, the dithionite-treated state, and the O 2-treated state. The absence of strong EPR signals from Fe/S clusters when Yah1p was depleted confirms that Yah1p is required in Fe/S cluster assembly. Yah1p-depleted mitochondria, grown with O 2 bubbling through the media, accumulated excess Fe (up to 10 mM) that was present as 2-4 nm diameter ferric nanoparticles, similar to those observed in mitochondria from yfh1Delta cells. These particles yielded a broad isotropic EPR signal centered around g = 2, characteristic of superparamagnetic relaxation. Treatment with dithionite caused Fe (3+) ions of the nanoparticles to become reduced and largely exported from the mitochondria. Fe did not accumulate in mitochondria isolated from cells grown under Ar; a significant portion of the Fe in these organelles was in the high-spin Fe (2+) state. This suggests that the O 2 used during growth of Gal- YAH1 cells is responsible, either directly or indirectly, for Fe accumulation and for oxidizing Fe (2+) --> Fe (3+) prior to aggregation. Models are proposed in which the accumulation of ferric nanoparticles is caused either by the absence of a ligand that prevents such precipitation in wild-type mitochondria or by a more oxidizing environment within the mitochondria of Yah1p-depleted cells exposed to O 2. The efficacy of reducing accumulated Fe along with chelating it should be considered as a strategy for its removal in diseases involving such accumulations.  相似文献   

19.
Polynuclear iron complexes of Fe(III) and phosphate occur in seawater and soils and in cells where the iron core of ferritin, the iron storage protein, contains up to 4500 Fe atoms in a complex with an average composition of (FeO.OH)8FeO.OPO3H2. Although phosphate influences the size of the ferritin core and thus the availability of stored iron, little is known about the nature of the Fe(III)-phosphate interaction. In the present study, Fe-phosphate interactions were analyzed in stable complexes of Fe(III).ATP which, in the polynuclear iron form, had phosphate at interior sites. Such Fe(III).ATP complexes are important not only as models but also because they may play a role in intracellular iron transport and in iron toxicity; the complexes were studied by extended x-ray absorption fine structure, EPR, NMR spectroscopy, and measurement of proton release. Mononuclear iron complexes exhibiting a g' = 4.3 EPR signal were formed at Fe:ATP ratios less than or equal to 1:3, and polynuclear iron complexes (Fe greater than or equal to 250, EPR silent at g' = 4.3) were formed at an Fe:ATP ratio of 4:1. No NMR signals due to ATP were observed when Fe was in excess (Fe:ATP = 4:1). Extended x-ray absorption fine structure analysis of the polynuclear Fe(III).ATP complex was able to distinguish an Fe-P distance at 3.27 A in addition to the octahedral O at 1.95 A and 4-5 Fe atoms at 3.36 A. The Fe-O and Fe-Fe distances are the same as in ferritin, and the Fe-P distance is analogous to that in another metal-ATP complex. An observable Fe-P environment in such a large polynuclear iron cluster as the Fe(III).ATP (4:1) complex indicates that the phosphate is distributed throughout rather than merely on the surface, in contrast to earlier models of chelate-stabilized iron clusters. Complexes of Fe(III) and ATP similar to those described here may form in vivo either as normal components of intracellular iron metabolism or during iron excess where the consequent alteration of free nucleotide triphosphate pools could contribute to the observed toxicity of iron.  相似文献   

20.
M?ssbauer, 57Fe ENDOR, CW and pulsed EPR experiments were performed on the reduced and the oxidized high-potential iron proteins (HiPIPs) of the wild type (WT) and the C77S mutant from Chromatium vinosum. The EPR spectra of the oxidized WT and mutant show three species respectively having nearly the same g-values but strongly changed spectral contributions. Relaxation times were estimated for oxidized WT and mutant at T = 5 K with pulsed EPR. A-tensor components of both iron pairs were obtained by 57Fe ENDOR, proving a similar magnetic structure for the WT and the mutant. Electronic relaxation has to be taken into account at T = 5 K in native and mutated oxidized HiPIPs to achieve agreement between M?ssbauer and 57Fe ENDOR spectroscopies. The M?ssbauer spectroscopy shows that the oxidized cluster contains a pure ferric and a mixed-valence iron pair coupled antiparallel. While all cluster irons from reduced C. vinosum WT are indistinguishable in the M?ssbauer spectrum, the reduced C77S mutant shows a non-equivalence between the serine-bound and the three cysteine-ligated iron ions. The M?ssbauer parameters confirm a loss of the covalent character of the iron bond when S is replaced by O and indicate a shift of the cluster's electron cloud towards the serine. M?ssbauer spectra of the oxidized mutant can be simulated with two models: model I introduces a single electronic isomer with the serine always ligated to a ferric iron. Model II assumes two equally populated electronic isomers with the serine ligated to a ferric iron and a mixed-valence iron, respectively. The latter model is in better agreement with EPR and NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号