首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is the first part of 2 studies that systematically review the current state of research and structure the results of selected electromyostimulation (EMS) studies in a way that makes accurate comparisons possible. This part will focus on the effects of EMS on strength enhancement. On the basis of these results, part 2 will deal with the influence of the training regimen and stimulation parameters on EMS training effectiveness to make recommendations for training control. Out of about 200 studies, 89 trials were selected according to predefined criteria: subject age (<35 years), subject health (unimpaired), EMS type (percutaneous stimulation), and study duration (>7 days). To evaluate these trials, we first defined appropriate categories according to the type of EMS (local or whole body) and type of muscle contraction (isometric, dynamic, isokinetic). Then, we established the most relevant strength parameters for high-performance sports: maximal strength, speed strength, power, jumping and sprinting ability. Unlike former reviews, this study differentiates between 3 categories of subjects based on their level of fitness (untrained subjects, trained subjects, and elite athletes) and on the types of EMS methods used (local, whole-body, combination). Special focus was on trained and elite athletes. Untrained athletes were investigated for comparison purposes. This scientific analysis revealed that EMS is effective for developing physical performance. After a stimulation period of 3-6 weeks, significant gains (p < 0.05) were shown in maximal strength (isometric Fmax +58.8%; dynamic Fmax +79.5%), speed strength (eccentric isokinetic Mmax +37.1%; concentric isokinetic Mmax + 41.3%; rate of force development + 74%; force impulse + 29%; vmax + 19%), and power (+67%). Developing these parameters increases vertical jump height by up to +25% (squat jump +21.4%, countermovement jump +19.2%, drop jump +12%) and improves sprint times by as much as -4.8% in trained and elite athletes. With regard to the level of fitness, the analysis shows that trained and elite athletes, despite their already high level of fitness, are able to significantly enhance their level of strength to same extent as is possible with untrained subjects. The EMS offers a promising alternative to traditional strength training for enhancing the strength parameters and motor abilities described above. Because of the clear-cut advantages in time management, especially when whole-body EMS is used, we can expect this method to see the increasing use in high-performance sports.  相似文献   

2.
This study compared twitch contractile properties of plantar flexor muscles among three groups of 12 subjects each: endurance and power trained athletes and untrained subjects. The posterior tibial nerve was stimulated by supramaximal square wave pulses of 1-ms duration. Power trained athletes had higher twitch maximal force, maximal rates of force development and relaxation and also maximal voluntary contraction (MVC) force. The trained subjects had a smaller twitch maximal force: MVC force ratio and shorter twitch contraction and half-relaxation times than the untrained subjects with no significant differences between the two groups. Thus, the short time for evoked twitches in the athletes compared to the untrained subjects would seem unrelated to the type of training. It is concluded that power training induces a more evident increase of muscle force-generating capacity and speed of contraction and relaxation than endurance training. Accepted: 24 April 1999  相似文献   

3.
The maximal rate of rise in muscle force [rate of force development (RFD)] has important functional consequences as it determines the force that can be generated in the early phase of muscle contraction (0-200 ms). The present study examined the effect of resistance training on contractile RFD and efferent motor outflow ("neural drive") during maximal muscle contraction. Contractile RFD (slope of force-time curve), impulse (time-integrated force), electromyography (EMG) signal amplitude (mean average voltage), and rate of EMG rise (slope of EMG-time curve) were determined (1-kHz sampling rate) during maximal isometric muscle contraction (quadriceps femoris) in 15 male subjects before and after 14 wk of heavy-resistance strength training (38 sessions). Maximal isometric muscle strength [maximal voluntary contraction (MVC)] increased from 291.1 +/- 9.8 to 339.0 +/- 10.2 N. m after training. Contractile RFD determined within time intervals of 30, 50, 100, and 200 ms relative to onset of contraction increased from 1,601 +/- 117 to 2,020 +/- 119 (P < 0.05), 1,802 +/- 121 to 2,201 +/- 106 (P < 0.01), 1,543 +/- 83 to 1,806 +/- 69 (P < 0.01), and 1,141 +/- 45 to 1,363 +/- 44 N. m. s(-1) (P < 0.01), respectively. Corresponding increases were observed in contractile impulse (P < 0.01-0.05). When normalized relative to MVC, contractile RFD increased 15% after training (at zero to one-sixth MVC; P < 0.05). Furthermore, muscle EMG increased (P < 0.01-0.05) 22-143% (mean average voltage) and 41-106% (rate of EMG rise) in the early contraction phase (0-200 ms). In conclusion, increases in explosive muscle strength (contractile RFD and impulse) were observed after heavy-resistance strength training. These findings could be explained by an enhanced neural drive, as evidenced by marked increases in EMG signal amplitude and rate of EMG rise in the early phase of muscle contraction.  相似文献   

4.
This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group (n = 13) or strength group (n = 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 ± 5.2% in the strength group (P < 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 ± 17.1%; P < 0.05). The V wave-to-maximal M wave (V/M(max)) ratio increased significantly (55.1 ± 28.3%; P < 0.001) following strength training, but the maximal H wave-to-maximal M wave (H(max)/M(max)) ratio remained unchanged. Conversely, in the endurance group the V/M(max) ratio was not altered, whereas the H(max)/M(max) ratio increased by 30.8 ± 21.7% (P < 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents.  相似文献   

5.
Elastic band assisted and resisted jump training may be a novel way to develop lower-body power. The purpose of this investigation was to (a) determine the kinetic differences between assisted, free, and resisted countermovement jumps and (b), investigate the effects of contrast training using either assisted, free, or resisted countermovement jump training on vertical jump performance in well-trained athletes. In part 1, 8 recreationally trained men were assessed for force output, relative peak power (PP·kg(-1)) and peak velocity during the 3 types of jump. The highest peak force was achieved in the resisted jump method, while PP·kg(-1) and peak velocity were greatest in the assisted jump. Each type of jump produced a different pattern of maximal values of the variables measured, which may have implications for developing separate components of muscular power. In part 2, 28 professional rugby players were assessed for vertical jump height before and after 4 weeks of either assisted (n = 9), resisted (n = 11), or free (n = 8) countermovement jump training. Relative to changes in the control group (1.3 ± 9.2%, mean ± SD), there were clear small improvements in jump height in the assisted (6.7 ± 9.6%) and the resisted jump training group (4.0 ± 8.8%). Elastic band assisted and resisted jump training are both effective methods for improving jump height and can be easily implemented into current training programs via contrast training methods or as a part of plyometric training sessions. Assisted and resisted jump training is recommended for athletes in whom explosive lower-body movements such as jumping and sprinting are performed as part of competition.  相似文献   

6.
The purpose of this study was to examine the effect of 3 different plyometric training frequencies (e.g., 1 day per week, 2 days per week, 4 days per week) associated with 3 different plyometric training volumes on maximal strength, vertical jump performance, and sprinting ability. Forty-two students were randomly assigned to 1 of 4 groups: control (n = 10, 7 sessions of drop jump (DJ) training, 1 day per week, 420 DJs), 14 sessions of DJ training (n = 12, 2 days per week, 840 DJs), and 28 sessions of DJ training (n = 9, 4 days per week, 1680 DJs). The training protocols included DJ from 3 different heights 20, 40, and 60 cm. Maximal strength (1 repetition maximum [1RM] and maximal isometric strength), vertical height in countermovement jumps and DJs, and 20-m sprint time tests were carried out before and after 7 weeks of plyometric training. No significant differences were observed among the groups in pre-training in any of the variables tested. No significant changes were observed in the control group in any of the variables tested at any point. Short-term plyometric training using moderate training frequency and volume of jumps (2 days per week, 840 jumps) produces similar enhancements in jumping performance, but greater training efficiency (approximately 12% and 0.014% per jump) compared with high jumping (4 days per week, 1680 jumps) training frequency (approximately 18% and 0.011% per jump). In addition, similar enhancements in 20-m-sprint time, jumping contact times and maximal strength were observed in both a moderate and low number of training sessions per week compared with high training frequencies, despite the fact that the average number of jumps accomplished in 7S (420 jumps) and 14S (840 jumps) was 25 and 50% of that performed in 28S (1680 jumps). These observations may have considerable practical relevance for the optimal design of plyometric training programs for athletes, given that a moderate volume is more efficient than a higher plyometric training volume.  相似文献   

7.
Isokinetic training of right and left quadriceps femoris was undertaken three times per week for 16 weeks. One group of subjects (n = 13) trained at an angular velocity of 4.19 rad.s-1 and a second group (n = 10) at 1.05 rad.s-1. A control group (n = 10) performed no training. Maximal voluntary contraction (MVC) of the quadriceps, and peak pedal velocity nu p,peak) and peak power output (Wpeak) during all-out cycling (against loads equivalent to 9, 10, 11, 12, 13 and 14% MVC) were assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of the performance variables (P > 0.05). No significant difference in MVC was observed for any group after the 16-week period (P = 0.167). The post-training increases in average Wpeak (7%) and nu p,peak (6%) during the cycle tests were each significantly different from the control group response (P = 0.018 and P = 0.008, respectively). It is concluded that 16 weeks of isokinetic strength training of the knee extensors is able to significantly improve nu p, peak and Wpeak during spring cycling, an activity which demands considerable involvement of the trained muscle group but with its own distinct pattern of coordination.  相似文献   

8.
The present study investigated the influence of a 12-week electromyostimulation (EMS) training program performed by elite rugby players. Twenty-five rugby players participated in the study, 15 in an electrostimulated group and the remaining 10 in a control group. EMS was conducted on the knee extensor, plantar flexor, and gluteus muscles. During the first 6 weeks, training sessions were carried out 3 times a week and during the last 6 weeks, once a week. Isokinetic torque of the knee extensors was determined at different eccentric and concentric angular velocities ranging from -120 to 360 degrees .s(-1). Scrummaging and full squat strength, vertical jump height and sprint-running times were also evaluated. After the first 6 weeks of EMS, only the squat strength was significantly improved (+8.3 +/- 6.5%; p < 0.01). After the 12th week, the -120 degrees .s(-1) maximal eccentric, 120 and 240 degrees .s(-1) maximal concentric torque (p < 0.05), squat strength (+15.0 +/- 8.0%; p < 0.001), squat jump (+10.0 +/- 9.5%; p < 0.01), and drop jump from a 40-cm height (+6.6 +/- 6.1%; p < 0.05) were significantly improved. No significant change was observed for the control group. A 12-week EMS training program demonstrated beneficial effects on muscle strength and power in elite rugby players on particular tests. However, rugby skills such as scrummaging and sprinting were not enhanced.  相似文献   

9.
A comparison of resistance running, normal sprint running, and supramaximal running was performed. Nineteen young, generally well-trained subjects were divided into 3 training groups: resistance, normal, and supramaximal groups. Resistance and supramaximal training was done using a towing device, providing extra resistance or propulsion forces, resulting in running speed differences of about 3.3% (supramaximal) and 8.5% (resistance), compared to normal sprinting. The training period was 6 weeks, with 3 training sessions per week (5 sprint-runs over 22 m). Running times were measured using photocells, and average step length and cadence were recorded by digital video. A small (0.5%) but significant (p < 0.05) overall pre-post difference was found in running velocity, but the 3 groups changed differently over the running conditions. All individual subjects improved sprinting velocity most on the trained form, at 1-2% (p < 0.001), and thus, the principle of velocity specificity in sprint training was supported. This indicates that to obtain short-distance sprinting improvement in a short period of time, one may prefer normal sprinting over other training forms.  相似文献   

10.
Twenty-three subjects isokinetically trained the right and left quadriceps femoris, three times per week for 16 weeks; one group (n=13) trained at an angular velocity of 4.19 rad · s–1 and a second group (n=10), at 1.05 rad · s–1. A control group (n=10) performed no training. Isometric endurance time at 60% quadriceps maximum voluntary contraction (MVC), mean power output and work done (W) during all-out cycling, and the muscle buffer value (B) and carnosine concentration of biopsy samples from the vastus lateralis, were all assessed before and after training. The two training groups did not differ significantly from each other in their training response to any of these variables (P < 0.05). No significant difference in either 60% MVC endurance time or impulse [(endurance time × force) at 60% MVC] was observed for any group after the 16 week period (P > 0.05). However, the post-training increase (9%) in W during high-intensity cycling was greater in the training group than in the control group (P=0.04). NeitherB nor carnosine concentration showed any significant change following training (P=0.56 andP=0.37, respectively). It is concluded that 16 weeks of isokinetic training of the knee extensors enables subjects to do more work during high-intensity cycling. Although the precise adaptations responsible for the improved performance have yet to be identified, they are unlikely to include an increase inB.  相似文献   

11.
The purpose of this study was to investigate the influence of additional resistance training on cardiorespiratory endurance in young (15.8 ± 0.8 yrs) male basketball players. Experimental group subjects (n=23) trained twice per week for 12 weeks using a variety of general free-weight and machine exercises designed for strength acquisition, beside ongoing regular basketball training program. Control group subject (n=23) participated only in basketball training program. Oxygen uptake (VO(2max)) and related gas exchange measures were determined continuously during maximal exercise test using an automated cardiopulmonary exercise system. Muscle power of the extensors and flexors was measured by a specific computerized tensiometer. Results from the experimental group (VO(2max) 51.6 ± 5.7 ml.min(-1).kg(-1) pre vs. 50.9 ± 5.4 ml.min(-1).kg(-1) post resistance training) showed no change (p>0.05) in cardiorespiratory endurance, while muscle strength and power of main muscle groups increased significantly. These data demonstrate no negative cardiorespiratory performance effects on adding resistance training to ongoing regular training program in young athletes.  相似文献   

12.
Changes in corticospinal excitability induced by 4 wk of heavy strength training or visuomotor skill learning were investigated in 24 healthy human subjects. Measurements of the input-output relation for biceps brachii motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation were obtained at rest and during voluntary contraction in the course of the training. The training paradigms induced specific changes in the motor performance capacity of the subjects. The strength training group increased maximal dynamic and isometric muscle strength by 31% (P < 0.001) and 12.5% (P = 0.045), respectively. The skill learning group improved skill performance significantly (P < 0.001). With one training bout, the only significant change in transcranial magnetic stimulation parameters was an increase in skill learning group maximal MEP level (MEP(max)) at rest (P = 0.02) for subjects performing skill training. With repeated skill training three times per week for 4 wk, MEP(max) increased and the minimal stimulation intensity required to elicit MEPs decreased significantly at rest and during contraction (P < 0.05). In contrast, MEP(max) and the slope of the input-output relation both decreased significantly at rest but not during contraction in the strength-trained subjects (P < or = 0.01). No significant changes were observed in a control group. A significant correlation between changes in neurophysiological parameters and motor performance was observed for skill learning but not strength training. The data show that increased corticospinal excitability may develop over several weeks of skill training and indicate that these changes may be of importance for task acquisition. Because strength training was not accompanied by similar changes, the data suggest that different adaptive changes are involved in neural adaptation to strength training.  相似文献   

13.
The goal of this study was to approbate a strength training protocol designed to improve motor skills at the maximum voluntary contraction (MVC) without hypertrophy of muscles. The main difference between this protocol and classical strength training was that the number of movements during a training session was increased to improve the motor skill, and the rest periods between the training movements were increased in order to minimize the damage of muscle fibers, which is one of the factors inducing muscle hypertrophy. Eleven subjects trained knee extensors of the right leg four times a week during four weeks. The evaluation of strength and speed characteristics with simultaneous recording the EMG activity was performed in both trained and untrained legs immediately before, during, and several times after the whole training period. Before and after the four-week training period, the size and contractile properties of the trained and contralateral knee extensors were evaluated by MRI and twitch interpolation technique. The maximal strength gains were about 17% in both trained and untrained legs; they did not differ significantly from each other. Noticeable increases in the EMG activity during the training period were observed. These changes were not accompanied by any significant changes in the muscle size, which demonstrates the “neural” nature of the training effects.  相似文献   

14.
The efficiency, safety, and effectiveness of strength training programs are paramount for sport conditioning. Therefore, identifying optimal doses of the training variables allows for maximal gains in muscular strength to be elicited per unit of time and also for the reduction in risk of overtraining and/or overuse injuries. A quantified dose-response relationship for the continuum of training intensities, frequencies, and volumes has been identified for recreationally trained populations but has yet to be identified for competitive athletes. The purpose of this analysis was to identify this relationship in collegiate, professional, and elite athletes. A meta-analysis of 37 studies with a total of 370 effect sizes was performed to identify the dose-response relationship among competitive athletes. Criteria for study inclusion were (a) participants must have been competitive athletes at the collegiate or professional level, (b) the study must have employed a strength training intervention, and (c) the study must have included necessary data to calculate effect sizes. Effect size data demonstrate that maximal strength gains are elicited among athletes who train at a mean training intensity of 85% of 1 repetition maximum (1RM), 2 days per week, and with a mean training volume of 8 sets per muscle group. The current data exhibit different dose-response trends than previous meta-analytical investigations with trained and untrained nonathletes. These results demonstrate explicit dose-response trends for maximal strength gains in athletes and may be directly used in strength and conditioning venues to optimize training efficiency and effectiveness.  相似文献   

15.
The aim of this study was to compare the pattern of force production and center of mass kinematics in maximal vertical jump performance between power athletes, recreational bodybuilders, and physically active subjects. Twenty-seven healthy male subjects (age: 24.5 +/- 4.3 years, height: 178.7 +/- 15.2 cm, and weight: 81.9 +/- 12.7 kg) with distinct training backgrounds were divided into 3 groups: power track athletes (PT, n = 10) with international experience, recreational bodybuilders (BB, n = 7) with at least 2 years of training experience, and physically active subjects (PA, n = 10). Subjects performed a 1 repetition maximum (1RM) leg press test and 5 countermovement jumps with no instructions regarding jumping technique. The power-trained group jumped significantly higher (p < 0.05) than the BB and PA groups (0.40 +/- 0.05, 0.31 +/- 0.04, and 0.30 +/- 0.05, respectively). The difference in jumping height was not produced by higher rates of force development (RFD) and shorter center of mass (CM) displacement. Instead, the PT group had greater CM excursion (p < 0.05) than the other groups. The PT and BB groups had a high correlation between jumping height and 1RM test (r = 0.93 and r = 0.89, p < 0.05, respectively). In conclusion, maximum strength seems to be important for jumping height, but RFD does not seem relevant to achieve maximum jumping heights. High RFD jumps should be performed during training only when sport skills have a time constraint for force application.  相似文献   

16.
During the first few weeks of resistance training, maximal voluntary contraction (MVC) force increases at a faster rate than can be accounted for by increases in protein synthesis. This early increase in MVC force has been attributed to neural mechanisms but the sources have not been identified. The purpose of this study was to measure changes in cortical excitability with transcranial magnetic stimulation during 4 weeks of resistance training of the tibialis anterior muscle. Ten individuals performed 6 sets of 10 MVCs 3 times per week for 4 weeks and ten participated as a control group. There were no changes in any parameters tested in the control group over the 4 weeks. In the training group, TA muscle strength increased significantly by 10% at week 2 and by 18% at week 4. As hypothesized, cortical excitability during resistance training also increased. The amplitude of the TA surface EMG motor evoked potential elicited by TMS during a low-level contraction increased by 32% after training with no change in the M-wave. These data indicate that there may be an increase in cortical excitability during the first few weeks of resistance training of the TA muscle.  相似文献   

17.
The purpose of this study was to investigate the acute effects of countermovement jumping and sprinting on shot put performance in experienced shot putters. Ten shot putters (best performance 13.16-20.36 m) participated in the study. After a standard warm-up including jogging, stretching, and 4-6 submaximal puts, they performed 3 shot put attempts with maximum effort, separated with 1.5-minute interval. Three minutes later, they performed 3 maximal consecutive countermovement jumps (CMJs). Immediately after jumping, they performed 3 shot put attempts with maximum effort, separated with a 1.5-minute interval. One week later, they carried out a similar protocol, at similar external conditions, but they performed a bout of 20-m sprinting instead of the CMJs, to potentiate shot put performance. Muscular strength (1 repetition maximum in squat, snatch, bench press, incline bench press) and body composition (dual x-ray absorptiometry) were measured during the same training period (±10 days from the jumping and sprinting protocols). Shot put performance was significantly increased after the CMJs (15.45 ± 2.36 vs. 15.85 ± 2.41 m, p = 0.0003). Similarly, shot put performance was significantly increased after sprinting (15.34 ± 2.41 vs. 15.90 ± 2.46 m, p = 0.0007). The increase in performance after sprinting was significantly higher compared with the increase after jumping (2.64 ± 1.59 vs. 3.74 ± 1.88%, p = 0.02). In conclusion, the results of this study indicate that a standard warm-up protocol followed by 3 maximal bouts of shot put and either 3 consecutive countermovement jumps or a bout of 20-m sprinting induce an acute increase in shot put performance in experienced shot putters.  相似文献   

18.
Training at the optimum power load (OPL) is an effective way to improve neuromuscular abilities of highly trained athletes. The purpose of this study was to test the effects of training using the jump squat (JS) or Olympic push-press (OPP) exercises at the OPL during a short-term preseason on speed-power related abilities in high-level under-20 soccer players. The players were divided into two training groups: JS group (JSG) and OPP group (OPPG). Both groups undertook 12 power-oriented sessions, using solely JS or OPP exercises. Pre- and post-6 weeks of training, athletes performed squat jump (SJ), countermovement jump (CMJ), sprinting speed (5, 10, 20 and 30 m), change of direction (COD) and speed tests. To calculate the transfer effect coefficient (TEC) between JS and MPP OPP and the speed in 5, 10, 20, and 30 m, the ratio between the result gain (effect size [ES]) in the untrained exercise and result gain in the trained exercise was calculated. Magnitude based inference and ES were used to test the meaningful effects. The TEC between JS and VEL 5, 10, 20, and 30 m ranged from 0.77 to 1.29, while the only TEC which could be calculated between OPP and VEL 5 was rather low (0.2). In addition, the training effects of JS on jumping and speed related abilities were superior (ES ranging from small to large) to those caused by OPP (trivial ES). To conclude, the JS exercise is superior to the OPP for improving speed-power abilities in elite young soccer players.  相似文献   

19.
To evaluate lower-limb explosive strength with respect to lifetime athletic activity, we measured vertical jumping height on a contact mat in former male runners (n = 28). soccer players (n = 31), weightlifters (n = 29) and shooters (n = 29) (age range 45 68 years). There were no statistically significant age-adjusted sport-group differences in jumping height, but differences by sport were evident among the subgroup of athletes without hip or knee osteoarthritis (n = 65) (P < 0.05). Thus, sports that increased jumping height also predisposed to lower-limb osteoarthritis. After adjustment for age and sport, the subjects without osteoarthritis jumped higher than those with osteoarthritis (n = 33) (P < 0.01). In a multiple linear regression analysis, age, reported hip and knee disability, and knee pain reduced jumping height. Hours spent in team-training during the past 12 months and the hours spent during their lifetime in power training were associated with improved vertical jumping height and together explained 41% of the difference among the subjects. The ability to jump even among athletes with hip or knee osteoarthritis would suggest that former elite athletes possess advanced lower limb muscle function.  相似文献   

20.
The purpose of this study was to examine the effect of 10 weeks' 40-m repeated sprint training program that does not involve strength training on sprinting speed and repeated sprint speed on young elite soccer players. Twenty young well-trained elite male soccer players of age (±SD) 16.4 (±0.9) years, body mass 67.2 (±9.1) kg, and stature 176.3 (±7.4) cm volunteered to participate in this study. All participants were tested on 40-m running speed, 10 × 40-m repeated sprint speed, 20-m acceleration speed, 20-m top speed, countermovement jump (CMJ), and aerobic endurance (beep test). Participants were divided into training group (TG) (n = 10) and control group (CG) (n = 10). The study was conducted in the precompetition phase of the training program for the participants and ended 13 weeks before the start of the season; the duration of the precompetition period was 26 weeks. The TG followed a Periodized repeated sprint training program once a week. The training program consisted of running 40 m with different intensities and duration from week to week. Within-group results indicate that TG had a statistically marked improvement in their performance from pre to posttest in 40-m maximum sprint (-0.06 seconds), 10 × 40-m repeated sprint speed (-0.12 seconds), 20- to 40-m top speed (-0.05 seconds), and CMJ (2.7 cm). The CG showed only a statistically notable improvement from pre to posttest in 10 × 40-m repeated sprint speed (-0.06 seconds). Between-group differences showed a statistically marked improvement for the TG over the CG in 10 × 40-m repeated sprint speed (-0.07 seconds) and 20- to 40-m top speed (-0.05 seconds), but the effect of the improvement was moderate. The results further indicate that a weekly training with repeated sprint gave a moderate but not statistically marked improvement in 40-m sprinting, CMJ, and beep test. The results of this study indicate that the repeated sprint program had a positive effect on several of the parameters tested. However, because the sample size in this study is 20 participants, the results are valid only for those who took part in this study. Therefore, we advice to use repeated sprint training similar to the one in this study only in periods where the players have no speed training included in their program. Furthermore, the participants in this study should probably trained strength, however, benefits were observed even without strength training is most likely to be caused by the training specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号