首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Fifty-two wee mutants that undergo mitosis and cell division at a reduced size compared with wild type have been genetically analyzed. The mutants define two genes, wee1 and cdc2, which control the timing of mitosis. Fifty-one of the mutants map at the wee1 locus, which is unlinked to any known cdc gene. One of the wee1 alleles has been shown to be nonsense suppressible. The 52nd wee mutant maps within cdc2. Previously, only temperature-sensitive mutants that become blocked at mitosis have been found at the cdc2 locus. The simplest interpretation of these observations is that wee1+ codes for a negative element or inhibitor, and cdc2+ codes for a positive element or activator in the mitotic control. The gene dosage of wee1+ plays some role in determining the timing of mitosis, but the gene dosage of cdc2+ has little effect. However, some aspect of the cdc2 gene product activity is important for determining when mitosis takes place. The possible roles of wee1 and cdc2 in the mitotic control are discussed, with particular reference to the part they may play in the monitoring of cell size and cell growth rate, both of which influence the timing of mitosis.  相似文献   

2.
3.
4.
Researchers working with fission yeast conduct protein extraction widely and frequently, but this includes the handling of glass beads, and hence is laborious and cumbersome, especially when dealing with a large number of samples. Here we describe a rapid and reliable method for preparing protein extract from fission yeast, one which is applicable to routine western blotting.  相似文献   

5.
Rad52 is a key player in homologous recombination (HR), a DNA repair pathway that is dedicated to double strand breaks repair and recovery of perturbed replication forks. Here we show that fission yeast Rad52 homologue is phosphorylated when S phase cells are exposed to ROS inducers such as ultraviolet A radiation or hydrogen peroxide, but not to ultraviolet C or camptothecin. Phosphorylation does not depend on kinases Chk1, Rad3, Tel1 or Cdc2, but depends on a functional stress activated protein kinase (SAPK) pathway and can be partially prevented by anti-oxidant treatment. Indeed, cells lacking Sty1, the major fission yeast MAP kinase of the SAPK pathway, do not display Rad52 phosphorylation and have UVA induced Rad52 foci that persist longer if compared to wild type cells. In addition, spontaneous intrachromosomal HR is diminished in cells lacking Sty1 and, more precisely, gene conversion is affected. Moreover, HR induced by site-specific arrest of replication forks is twice less efficient in cells that do not express Sty1. Importantly, impairing HR by deletion of the gene encoding the recombinase Rhp51 leads to Sty1 dependent Rad52 phosphorylation. Thus, SAPK pathway impinges on early step of HR through phosphorylation of Rad52 in cells challenged by oxidative stress or lacking Rhp51 and is required to promote spontaneous gene conversion and recovery from blocked replication forks.  相似文献   

6.
The gene ptc4+ encodes one of four type 2C protein phosphatases (PP2C) in the fission yeast Schizosaccharomyces pombe. Deletion of ptc4+ is not lethal; however, Deltaptc4 cells grow slowly in defined minimal medium and undergo premature growth arrest in response to nitrogen starvation. Interestingly, Deltaptc4 cells are unable to fuse vacuoles in response to hypotonic stress or nutrient starvation. Conversely, Ptc4 overexpression appears to induce vacuole fusion. These findings reveal a hitherto unrecognized function of type 2C protein phosphatases: regulation of vacuole fusion. Ptc4 localizes in vacuole membranes, which suggests that Ptc4 regulates vacuole fusion by dephosphorylation of one or more proteins in the vacuole membrane. Vacuole function is required for the process of autophagy that is induced by nutrient starvation; thus, the vacuole defect of Deltaptc4 cells might explain why these cells undergo premature growth arrest in response to nitrogen starvation.  相似文献   

7.
Protein S-palmitoylation, a lipid modification mediated by members of the palmitoyltransferase family, serves as an important membrane-targeting mechanism in eukaryotes. Although changes in palmitoyltransferase expression are associated with various physiological and disease states, how these changes affect global protein palmitoylation and cellular function remains unknown. Using a bioorthogonal chemical reporter and labeling strategy to identify and analyze multiple cognate substrates of a single Erf2 palmitoyltransferase, we demonstrate that control of Erf2 activity levels underlies the differential modification of key substrates such as the Rho3 GTPase in vegetative and meiotic cells. We show further that modulation of Erf2 activity levels drives changes in the palmitoylome as cells enter meiosis and affects meiotic entry. Disruption of Erf2 function delays meiotic entry, while increasing Erf2 palmitoyltransferase activity triggers aberrant meiosis in sensitized cells. Erf2-induced meiosis requires the function of the Rho3 GTPase, which is regulated by its palmitoylation state. We propose that control of palmitoyltransferase activity levels provides a fundamental mechanism for modulating palmitoylomes and cellular functions.  相似文献   

8.
9.
The multiprotein Mediator complex is an important regulator of RNA polymerase II-dependent genes in eukaryotic cells. In contrast to the situation in many other eukaryotes, the conserved Med15 protein is not a stable component of Mediator isolated from fission yeast. We here demonstrate that Med15 exists in a protein complex together with Hrp1, a CHD1 ATP-dependent chromatin-remodeling protein. The Med15-Hrp1 subcomplex is not a component of the core Mediator complex but can interact with the L-Mediator conformation. Deletion of med15+ and hrp1+ causes very similar effects on global steady-state levels of mRNA, and genome-wide analyses demonstrate that Med15 associates with a distinct subset of Hrp1-bound gene promoters. Our findings therefore indicate that Mediator may directly influence histone density at regulated promoters.  相似文献   

10.
11.
P. Munz 《Genetics》1994,137(3):701-707
The evaluation of three-point crosses at the tetrad and random spore level leads to the conclusion that both chiasma and chromatid interference are absent in the fission yeast Schizosaccharomyces pombe.  相似文献   

12.
13.
Fission yeast has two TOR kinases, Tor1 and Tor2. Recent studies have indicated that this microbe has a TSC/Rheb/TOR pathway like higher eukaryotes. Two TOR complexes, namely TORC1 and TORC2, have been identified in this yeast, as in budding yeast and mammals. Fission yeast TORC1, which contains Tor2, and TORC2, which contains Tor1, apparently have opposite functions with regard to the promotion of G1 arrest and sexual development. Rapamycin does not inhibit growth of wild-type fission yeast cells, unlike other eukaryotic cells, but precise analyses have revealed that rapamycin affects certain cellular functions involving TOR in this yeast. It appears that fission yeast has a potential to be an ideal model system to investigate the TOR signaling pathways.  相似文献   

14.
The quaking viable (qkv) mice represent an animal model of dysmyelination. The absence of expression of the QKI-6 and QKI-7 cytoplasmic isoforms in oligodendrocytes (OLs) during CNS myelination causes the qkv mouse phenotype. The QKI RNA-binding proteins are known to regulate RNA metabolism of cell cycle proteins and myelin components in OLs; however, little is known of their role in reorganizing the cytoskeleton or process outgrowth during OL maturation and differentiation. Here, we identify the actin-interacting protein (AIP)-1 mRNA as a target of QKI-6 by using two-dimensional differential gel electrophoresis. The AIP-1 mRNA contains a consensus QKI response element within its 3′-untranslated region that, when bound by QKI-6, decreases the half-life of the AIP-1 mRNA. Although the expression of QKI-6 is known to increase during OL differentiation and CNS myelination, we show that this increase is paralleled with a corresponding decrease in AIP-1 expression in rat brains. Furthermore, qkv/qkv mice that lack QKI-6 and QKI-7 within its OLs had an increased level of AIP-1 in OLs. Moreover, primary rat OL precursors harboring an AIP-1 small interfering RNA display defects in OL process outgrowth. Our findings suggest that the QKI RNA-binding proteins regulate OL differentiation by modulating the expression of AIP-1.  相似文献   

15.

Background

Fyn tyrosine kinase-mediated down-regulation of Rho activity through activation of p190RhoGAP is crucial for oligodendrocyte differentiation and myelination. Therefore, the loss of function of its counterpart protein tyrosine phosphatase (PTP) may enhance myelination during development and remyelination in demyelinating diseases. To test this hypothesis, we investigated whether Ptprz, a receptor-like PTP (RPTP) expressed abuntantly in oligodendrocyte lineage cells, is involved in this process, because we recently revealed that p190RhoGAP is a physiological substrate for Ptprz.

Methodology/Principal Findings

We found an early onset of the expression of myelin basic protein (MBP), a major protein of the myelin sheath, and early initiation of myelination in vivo during development of the Ptprz-deficient mouse, as compared with the wild-type. In addition, oligodendrocytes appeared earlier in primary cultures from Ptprz-deficient mice than wild-type mice. Furthermore, adult Ptprz-deficient mice were less susceptible to experimental autoimmune encephalomyelitis (EAE) induced by active immunization with myelin/oligodendrocyte glycoprotein (MOG) peptide than were wild-type mice. After EAE was induced, the tyrosine phosphorylation of p190RhoGAP increased significantly, and the EAE-induced loss of MBP was markedly suppressed in the white matter of the spinal cord in Ptprz-deficient mice. Here, the number of T-cells and macrophages/microglia infiltrating into the spinal cord did not differ between the two genotypes after MOG immunization. All these findings strongly support the validity of our hypothesis.

Conclusions/Significance

Ptprz plays a negative role in oligodendrocyte differentiation in early central nervous system (CNS) development and remyelination in demyelinating CNS diseases, through the dephosphorylation of substrates such as p190RhoGAP.  相似文献   

16.
17.
The matrix (MA) domain of the human immunodeficiency virus type 1 (HIV-1) precursor Gag (PrGag) protein plays multiple roles in the viral replication cycle. One essential role is to target PrGag proteins to their lipid raft-associated phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] assembly sites at the plasma membranes of infected cells. In addition to this role, several reports have implicated nucleic acid binding properties to retroviral MAs. Evidence indicates that RNA binding enhances the binding specificity of MA to PI(4,5)P2-containing membranes and supports a hypothesis in which RNA binding to MA acts as a chaperone that protects MA from associating with inappropriate cellular membranes prior to PrGag delivery to plasma membrane assembly sites. To gain a better understanding of HIV-1 MA-RNA interactions, we have analyzed the interaction of HIV MA with RNA ligands that were selected previously for their high affinities to MA. Binding interactions were characterized via bead binding, fluorescence anisotropy, gel shift, and analytical ultracentrifugation methods. Moreover, MA residues that are involved in RNA binding were identified from NMR chemical shift data. Our results indicate that the MA RNA and PI(4,5)P2 binding sites overlap and suggest models for Gag-membrane and Gag-RNA interactions and for the HIV assembly pathway.  相似文献   

18.
冷诱导RNA结合蛋白(CIRP)广泛表达于各种组织细胞中,但低温(32℃)诱导下表达明显增加。随着研究的不断深入,科学家们发现CIRP还可以被其他应激条件如紫外线、缺氧、渗透压等诱导高表达。CIRP是一种重要的生理活性物质,其表达量的改变,直接影响体内心率、体温、内分泌等有节律性变化的生理过程。现已证实它广泛参与缺氧神经元保护、癌症发生、神经及胚胎发育、生物钟调节等一系列生化过程。我们对冷诱导RNA结合蛋白的最新研究进展加以综述,旨在初步阐明该蛋白的功能,为利用该蛋白治疗临床相关疾病奠定理论基础。  相似文献   

19.
Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelopmental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号