首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett–Burman (P–B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g−1 initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g−1 initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.  相似文献   

2.
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l−1) in a batch process resulted in the production of 18.4 g l−1 ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l−1 ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l−1 ABE was produced compared to 18.6 g l−1 (control). In this integrated system, 225.8 g l−1 SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l−1 glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

3.
Pretreatment of paddy straw with 2% sodium hydroxide at 15 psi for 1 h resulted in 83% delignification. The hydrolysis of alkali treated paddy straw with a commercial preparation of cellulase for 2 h at 50°C resulted in release of 65% total reducing sugars. Maximum sugars were released at enzyme loading of 1.5% (v/v). The fermentation of hydrolysate supplemented with nutrients by S. cerevisiae resulted in the production of 20–30 g L−1 ethanol after 48 h incubation which was further improved with addition of yeast nitrogen base and inoculated with 1% (w/v) yeast cells.  相似文献   

4.
Continuous production of ethanol from alkaline peroxide pretreated and enzymatically saccharified wheat straw hydrolysate by ethanologenic recombinant Escherichia coli strain FBR5 was investigated under various conditions at controlled pH 6.5 and 35°C. The strain FBR5 was chosen because of its ability to ferment both hexose and pentose sugars under semi-anaerobic conditions without using antibiotics. The average ethanol produced from the available sugars (21.9–47.8 g/L) ranged from 8.8 to 17.3 g/L (0.28–0.45 g/g available sugars, 0.31–0.48 g/g sugar consumed) with ethanol productivity of 0.27–0.78 g l−1 h−1 in a set of 14 continuous culture (CC) runs (16–105 days). During these CC runs, no loss of ethanol productivity was observed. This is the first report on the continuous production of ethanol by the recombinant bacterium from a lignocellulosic hydrolysate.  相似文献   

5.
Patle S  Lal B 《Biotechnology letters》2007,29(12):1839-1843
Acid, alkaline and enzymatic hydrolysis of agricultural crop wastes were compared for yields of total reducing sugars with the hydrolysates being evaluated for ethanol production using a mixed culture of Zymomonas mobilis and Candida tropicalis. Acid hydrolysis of fruit and vegetable residues gave 49–84 g reducing sugars l−1 and 29–32 g ethanol l−1 was then obtained. Alkaline hydrolysis did not give significant amount of reducing sugars. Enzymatic hydrolysis of fruit and vegetable residues yielded 36–123 g reducing sugars l−1 and 11–54 g ethanol l−1.  相似文献   

6.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

7.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

8.
Molasses “B” is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50–65%) than the final molasses, with a lower non-sugar solid content (18–33%); this co-product also contains good vitamin and mineral levels. The use of molasses “B” for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses “B” for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70–291 g L−1), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L−1 total sugars in molasses “B” medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g−1). The best conditions for ethanol production were 220 g L−1 initial total sugars in molasses “B” medium, pH 5.5, using an inoculum size of 6 × 106 cell mL−1; ethanol production was 85 g L−1, productivity 3.8 g L−1 h−1 with 90% preserved cell viability.  相似文献   

9.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

10.
Extracts from Laminaria hyperborea could possibly be fermented to ethanol commercially. In particular, seaweed harvested in the autumn contains high levels of easily extractable laminaran and mannitol. Four microorganisms were tested to carry out this fermentation, one bacterium and three yeasts. Only Pichia angophorae was able to utilise both laminaran and mannitol for ethanol production, and its substrate preferences were investigated in batch and continuous cultures. Laminaran and mannitol were consumed simultaneously, but with different relative rates. In batch fermentations, mannitol was the preferred substrate. Its share of the total laminaran and mannitol consumption rate increased with oxygen transfer rate (OTR) and pH. In continuous fermentations, laminaran was the preferred substrate at low OTR, whereas at higher OTR, laminaran and mannitol were consumed at similar rates. Optimisation of ethanol yield required a low OTR, and the best yield of 0.43 g ethanol (g substrate)−1 was achieved in batch culture at pH 4.5 and 5.8 mmol O2 l−1 h−1. However, industrial production of ethanol from seaweed would require an optimisation of the extraction process to yield a higher ethanol concentration. Journal of Industrial Microbiology & Biotechnology (2000) 25, 249–254. Received 25 February 2000/ Accepted in revised form 05 August 2000  相似文献   

11.
Lactic acid production from xylose by the fungus Rhizopus oryzae   总被引:1,自引:1,他引:0  
Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure l(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g−1. By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l−1 showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l−1) and glucose (19.2 g l−1) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l−1 h−1 and 0.5 g xylose l−1 h−1. This resulted mainly into the product lactic acid (6.8 g l−1) and ethanol (5.7 g l−1).  相似文献   

12.
Diluted cane molasses having total sugar and reducing sugar content of 9.60 and 3.80% (w/v) respectively was subjected to ethanol production by Saccharomyces cerevisiae MTCC 178. Incorporation of dried Cauliflower Waste (CW) in molasses at the level of 15 % increased ethanol production by nearly 36 % compared to molasses alone. Addition of 0.2 % yeast extract improved ethanol production by nearly 49 % as compared to molasses alone. When the medium containing diluted molasses and 0.2 % yeast extract was supplemented with 15 % CW, 29 % more ethanol was produced compared to molasses with 0.2 % yeast extract. Cell biomass, ethanol production, final ethanol concentration and fermentation efficiency of 2.65 mg mL−1, 41.2 gL−1, 0.358 gg−1 and 70.11 % respectively were found to be best at 15% CW supplementation level besides reduction in fermentation time but further increase in CW level resulted in decline on account of all the above parameters. This is probably the first report to our knowledge, in which CW was used in enhancing ethanol production significantly using a small quantity of yeast extract.  相似文献   

13.
This is an overview of the mutant strain Clostridium beijerinckii BA101 which produces solvents (acetone–butanol–ethanol, ABE) at elevated levels. This organism expresses high levels of amylases when grown on starch. C. beijerinckii BA101 hydrolyzes starch effectively and produces solvent in the concentration range of 27–29 g l−1. C. beijerinckii BA101 has been characterized for both substrate and butanol inhibition. Supplementing the fermentation medium (MP2) with sodium acetate enhances solvent production to 33 g l−1. The results of studies utilizing commercial fermentation medium and pilot plant-scale reactors are consistent with the results using small-scale reactors. Pervaporation, a technique to recover solvents, has been applied to fed-batch reactors containing C. beijerinckii BA101, and solvent production as high as 165 g l−1 has been achieved. Immobilization of C. beijerinckii BA101 by adsorption and use in a continuous reactor resulted in reactor productivity of 15.8 g l−1 h−1. Recent economic studies employing C. beijerinckii BA101 suggested that butanol can be produced at US$0.20–0.25 lb−1 by employing batch fermentation and distillative recovery. Application of new technologies such as pervaporation, fed-batch culture, and immobilized cell reactors is expected to further reduce these prices. Journal of Industrial Microbiology & Biotechnology (2001) 27, 287–291. Received 12 September 2000/ Accepted in revised form 27 January 2001  相似文献   

14.
An innovative consecutive batch fermentation process was developed for very high gravity (VHG) ethanol fermentation with the self-flocculating yeast under high biomass concentration conditions. On the one hand, the high biomass concentration significantly shortened the time required to complete the VHG fermentation and the duration of yeast cells suffering from strong ethanol inhibition, preventing them from losing viability and making them suitable for being repeatedly used in the process. On the other hand, the separation of yeast cells from the fermentation broth by sedimentation instead of centrifugation, making the process economically more competitive. The VHG medium composed of 255 g L−1 glucose and 6.75 g L−1 each of yeast extract and peptone was fed into the fermentation system for nine consecutive batch fermentations, which were completed within 8–14 h with an average ethanol concentration of 15% (v/v) and ethanol yield of 0.464, 90.8% of its theoretical value of 0.511. The average ethanol productivity that was calculated with the inclusion of the downstream time for the yeast flocs to settle from the fermentation broth and the supernatant to be removed from the fermentation system was 8.2 g L−1 h−1, much higher than those previously reported for VHG ethanol fermentation and regular ethanol fermentation with ethanol concentration around 12% (v/v) as well.  相似文献   

15.
Aerobic glucose-limited chemostat cultivations were conducted with Saccharomyces cerevisiae strains NRRL Y132, ATCC 4126 and CBS 8066, using a complex medium. At low dilution rates all three strains utilised glucose oxidatively with high biomass yield coefficients, no ethanol production and very low steady-state residual glucose concentrations in the culture. Above a threshold dilution rate, respiro-fermentative (oxido-reductive) metabolism commenced, with simultaneous respiration and fermentation occurring, which is typical of Crabtree-positive yeasts. However, at high dilution rates the three strains responded differently. At high dilution rates S. cerevisiae CBS 8066 produced 7–8 g ethanol L−1 from 20 g glucose L−1 with concomitant low levels of residual glucose, which increased markedly only close to the wash-out dilution rate. By contrast, in the respiro-fermentative region both S. cerevisiae ATCC 4126 and NRRL Y132 produced much lower levels of ethanol (3–4 g L−1) than S. cerevisiae CBS 8066, concomitant with very high residual sugar concentrations, which was a significant deviation from Monod kinetics and appeared to be associated either with high growth rates or with a fermentative (or respiro-fermentative) metabolism. Supplementation of the cultures with inorganic or organic nutrients failed to improve ethanol production or glucose assimilation. Journal of Industrial Microbiology & Biotechnology (2000) 24, 231–236. Received 09 August 1999/ Accepted in revised form 18 December 1999  相似文献   

16.
Aims: To determine the influence of the flavanol catechin on key metabolic traits for the fermentation performance of Lactobacillus plantarum strain RM71 in different media and to evaluate the ability of this strain to catabolize catechin. Methods and Results: Growth monitoring and time course of sugar consumption data tracking in chemically defined medium (CDM), revealed that growth of Lact. plantarum strain RM71 upon catechin was characterized by a noticeable shorter lag period, outcome of earlier sugar consumption and lactic acid production courses. Catechin gave rise to higher cell densities compared to controls because of an increased extension of sugar utilization. Fermentation of media relevant for practical fermentation processes with Lact. plantarum strain RM71 showed that catechin sped up malic acid decarboxylation, which besides quicker and extended consumption of several sugars, resulted in faster and higher lactic acid production and growth. Spectrophotometric evaluation of catechin by HPLC‐DAD and the lack of catechin concentration‐dependent effects showed that the observed stimulations were uncoupled from catechin catabolism by Lact. plantarum. Conclusions: The flavanol catechin stimulated the growth of Lact. plantarum strain RM71 by promoting quicker sugar consumption, increasing the extension of sugar utilization and stimulating malic acid decarboxylation. These stimulations are uncoupled from catechin catabolism as Lact. plantarum did not catabolize it during fermentation. Significance and Impact of the Study: This study, for the first time, examined the influence of the flavanol catechin on the fermentation performance of a Lact. plantarum strain in several media under different fermentation conditions. The information could be relevant to control the production and obtain high‐quality food products fermented by this micro‐organism.  相似文献   

17.
Acetobacter aceti have been grown on ethanol under inhibitory conditions created by high concentrations of phenol. A defined medium with no vitamin or amino acid supplements has been used such that ethanol was the sole carbon substrate. The culture temperature was maintained at 30 °C while the pH was manually controlled to fall within the range 4.5–6.0 during ethanol consumption. Growth on ethanol at a few thousand milligrams per litre (below the known inhibitory level) resulted in a maximum specific growth rate of 0.16 h−1 with a 95% yield of acetic acid, followed immediately by acetic acid consumption at a growth rate of 0.037 h−1. Phenol was found to inhibit growth by decreasing both the specific growth rate and the biomass yield during ethanol consumption. On the other hand, the yield of acetic acid during ethanol consumption and the yield of biomass during acetic acid consumption remained constant, independent of phenol inhibition. A model is presented and is shown to represent the phenol-inhibited growth behaviour of A. aceti during both ethanol and acetic acid consumption. Received: 6 November 1998 / Received revision: 8 February 1999 / Accepted: 12 February 1999  相似文献   

18.
As a first step in the research on ethanol production from lignocellulose residues, sugar fermentation by Fusarium oxysporum in oxygen-limited conditions is studied in this work. As a substrate, solutions of arabinose, glucose, xylose and glucose/xylose mixtures are employed. The main kinetic and yield parameters of the process are determined according to a time-dependent model. The microorganism growth is characterized by the maximum specific growth rate and biomass productivity, the substrate consumption is studied through the specific consumption rate and biomass yield, and the product formation via the specific production rate and product yields. In conclusion, F. oxysporum can convert glucose and xylose into ethanol with product yields of 0.38 and 0.25, respectively; when using a glucose/xylose mixture as carbon source, the sugars are utilized sequentially and a maximum value of 0.28 g/g ethanol yield is determined from a 50% glucose/50% xylose mixture. Although fermentation performance by F.␣oxysporum is somewhat lower than that of other fermenting microorganisms, its ability for simultaneous lignocellulose-residue saccharification and fermentation is considered as a potential advantage.  相似文献   

19.
Saccharomyces’ physiology and fermentation-related properties vary broadly among industrial strains used to ferment glucose. How genetic background affects xylose metabolism in recombinant Saccharomyces strains has not been adequately explored. In this study, six industrial strains of varied genetic background were engineered to ferment xylose by stable integration of the xylose reductase, xylitol dehydrogenase, and xylulokinase genes. Aerobic growth rates on xylose were 0.04–0.17 h−1. Fermentation of xylose and glucose/xylose mixtures also showed a wide range of performance between strains. During xylose fermentation, xylose consumption rates were 0.17–0.31 g/l/h, with ethanol yields 0.18–0.27 g/g. Yields of ethanol and the metabolite xylitol were positively correlated, indicating that all of the strains had downstream limitations to xylose metabolism. The better-performing engineered and parental strains were compared for conversion of alkaline pretreated switchgrass to ethanol. The engineered strains produced 13–17% more ethanol than the parental control strains because of their ability to ferment xylose.  相似文献   

20.
Attempts were made to quantify the carbon and nitrogen pools in a monospecific and pioneer mangrove stand of Kandelia obovata Sheue, Liu & Yong, Okinawa Island, Japan. The leaf C and N concentrations on a leaf area basis decreased with increasing PPFD (Photosysthetic Photon Flux Density). The total C and N stocks in foliage were estimated as 3.55 Mg ha–1 and 0.105 Mg ha–1, respectively. The bark (45.6–48.6% for C and 0.564–0.842% for N) contained significantly higher amount of C (P < 0.05) and N (P < 0.01) than wood (46.2–47.8% for C and 0.347–0.914% N). The total C stock of stem was 23.2 Mg ha–1 in wood and 8.33 Mg ha–1 in bark, and the total N stock was 0.222 Mg ha–1 in wood and 0.116 Mg ha–1 in bark. The root wood (37.1–45.0%) contained significantly higher amount of C than root bark (35.4–40.7%) (P < 0.01). The total C stock of root was 14.2 Mg ha–1 in wood and 12.6 Mg ha–1 in bark, and the total N stock of root was 0.157 Mg ha–1 in wood and 0.155 Mg ha–1 in bark. The soil organic C and total N stocks within 1 m soil depth were estimated as 57.3 Mg ha–1 and 2.73 Mg ha–1, respectively. The C pool in aboveground biomass (35.1 Mg ha–1) was 1.3 times as large as that in belowground biomass (26.9 Mg ha–1). However, the soil organic C pool (57.3 Mg ha–1) was similar to the total C pool (62.0 Mg ha–1) of vegetation, indicating that the mangrove stored a large part of production in the soil. About 50% of the C was in the soil. The N pool in aboveground biomass (0.442 Mg ha–1) was 1.4 times as large as that in belowground biomass (0.312 Mg ha–1). The soil N stock was 3.3 times as large as the biomass N stock (0.754 Mg ha–1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号