首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adhikari  Tapan  Rattan  R. K. 《Plant and Soil》2000,220(1-2):235-242
The Barber-Cushman mechanistic nutrient uptake model which has been utilized extensively to describe and predict nutrient uptake by crop plants at different stages of crop growth was evaluated for its ability to predict the Zn uptake by rice seedlings. Uptake of the nutrient is, therefore, determined by the rate of nutrient supply to the root surface by mass flow and diffusion. Inter root competition and time dependent root density are accounted for by soil volume that delivers nutrients. The radii of these cylinders decline with increasing density. Since mass flow and diffusion each supply zinc to the root, the process can be described mathematically using the model of Barber-Cushman (1984). The 11 parameters of the model for the uptake by rice cultivars were measured by established experimental techniques. Zinc uptake at different growth stages predicted by the model was compared to measured zinc uptake by rice cultivars grown on sandy loam soil in a green house. Predicted zinc uptake was significantly correlated with observed uptake r 2=0.99**. Sensitivity analysis was also used to investigate the impact of changes in soil nutrient supply, root morphological and root uptake kinetic parameters on simulated nutrient uptake. Overall results of sensitivity analysis indicate that the half distance between root axes, rate of root growth and water flux affect the uptake of zinc particularly at their higher values rather than at lower values and DaZn is the most sensitive parameter for zinc uptake at its lower values.  相似文献   

2.
P. H. Nye 《Plant and Soil》1966,25(1):81-105
Summary A portion of a single plant root is treated as an absorbing cylindrical sink to which nutrients move by diffusion. Assuming that the rate of uptake of nutrient is proportional to its concentration at the root surface, and that the nutrient, though reacting with the solid, moves only through the soil solution, standard diffusion equations are used to calculate the effect of soil and plant characteristics on the rate of uptake. The treatment is applicable to phosphorus and potassium. Among soil properties uptake should increase directly with the soil solution concentration. It should also increase, but only slowly, with increasing buffering power. It increases with increasing soil moisture. Among plant characteristics, uptake should increase with the root absorbing power until diffusion through the soil becomes limiting. Absorption by unit surface area of root increases as the root radius decreases. A root hair is shown to interfere quickly with the uptake of adjacent hairs. The hairs increase absorption by the root because they can exploit rapidly the soil between the hairs, and they have the effect of extending the effective root surface to their tips.  相似文献   

3.
? The importance of root hairs in the uptake of sparingly soluble nutrients is understood qualitatively, but not quantitatively, and this limits efforts to breed plants tolerant of nutrient-deficient soils. ? Here, we develop a mathematical model of nutrient uptake by root hairs allowing for hair geometry and the details of nutrient transport through soil, including diffusion within and between soil particles. We give illustrative results for phosphate uptake. ? Compared with conventional 'single porosity' models, this 'dual porosity' model predicts greater root uptake because more nutrient is available by slow release from within soil particles. Also the effect of soil moisture is less important with the dual porosity model because the effective volume available for diffusion in the soil is larger, and the predicted effects of hair length and density are different. ? Consistent with experimental observations, with the dual porosity model, increases in hair length give greater increases in uptake than increases in hair density per unit main root length. The effect of hair density is less in dry soil because the minimum concentration in solution for net influx is reached more rapidly. The effect of hair length is much less sensitive to soil moisture.  相似文献   

4.
Nutrient uptake relationship to root characteristics of rice   总被引:1,自引:0,他引:1  
Data on root parameters and distribution are important for an improved understanding of the factors influencing nutrient uptake by a crop. Therefore, a study was conducted on a Crowley silt loam at the Rice Research and Extension Center near Stuttgart, Arkansas to measure root growth and N, P and K uptake by three rice (Oryza sativa L.) cultivars at active tillering (36 days after emergence (DAE)), maximum tillering (41 DAE), 1.25 cm internode elongation (55 DAE), booting (77 DAE) and heading (88 DAE). Soil-root core samples were taken to a depth of 40 cm after plant samples were removed, sectioned into 5 cm intervals, roots were washed from soil and root lengths, dry weights and radii were measured. Root parameters were significantly affected by the soil depth × growth stage interaction. In addition, only root radius was affected by cultivar. At the 0- to 5-cm soil depth, root length density ranged from 38 to 93 cm cm-3 throughout the growing season and decreased with depth to about 2 cm cm-3 in the 35- to 40-cm depth increment. The increase in root length measured with each succeeding growth stage in each soil horizon also resulted in increased root surface area, hence providing more exposed area for nutrient uptake. About 90% of the total root length was found in the 0- to 20-cm soil depth throughout the season. Average root radius measured in the 0- to 5-cm and 35- to 40-cm depth increments ranged from 0.012 to 0.013 cm and 0.004 to 0.005 cm, respectively throughout the season. Total nutrient uptake by rice differed among cultivars only during vegetative growth. Differences in total nutrient uptake among the cultivars in the field appear to be related to absorption kinetics of the cultivars measured in a growth chamber study. Published with permission of the Arkansas Agricultural Experiment Station.  相似文献   

5.
To clarify the nutrient acquisition strategies for below-ground resources in a subalpine Abies forest with shallow soils, we examined the vertical patterns of fine root biomass, morphology, nitrogen concentration of fine root tissue and soil chemical characteristics in nine quadrats of sapling, young and mature stands in a subalpine fir-wave forest, central Japan. The community characteristics changed with stand development, but stand development did not influence the vertical pattern of fine root characteristics. Fine root biomass decreased with soil depth. Specific root length did not differ among soil depths, and neither average diameter nor tissue density of fine roots changed vertically. The nitrogen concentration of fine roots differed significantly among soil depths, and was higher in surface soils than in deeper soils. Moreover, soil pH, soil electrical conductivity and soil nitrogen concentration were higher in surface layers than deeper layers. Therefore, we suggest that the subalpine Abies community has a nutrient acquisition strategy that allows uptake of more nutrients near the surface in shallow soils due to the larger investment in biomass and more active metabolism, but not due to phenotypic plasticity in fine root morphology. In addition, we observed that fine root biomass changed with stand development, where specific root length was greater in sapling stands than in older stands.  相似文献   

6.
Summary In competition experiments with Lolium perenne and Agrostis tenuis on sandy soil with nitrogen supplied and therefore not limiting, it was found that the competitive interactions could be explained in terms of phosphate uptake, and that the ratio of root weight: length was proportional to root density. The effects of competition were then investigated in an experimental system that enabled them to be distinguished from those of nutrient supply. High levels of nutrients specifically stimulated the production of fine laterals whereas competition affected length and weight of the root system of Lolium equally. The ecological implications are discussed in the light of recent physiological work on root responses to nutrient supply. re]19750324  相似文献   

7.
Somma  F.  Hopmans  J.W.  Clausnitzer  V. 《Plant and Soil》1998,202(2):281-293
A three-dimensional solute transport model was developed and linked to a three-dimensional transient model for soil water flow and root growth. The simulation domain is discretized into a grid of finite elements by which the soil physical properties are spatially distributed. Solute transport modeling includes passive and active nutrient uptake by roots as well as zero- and first-order source/sink terms. Root water uptake modeling accounts for matric and osmotic potential effects on water and passive nutrient uptake. Root age effects on root water and nutrient uptake activity have been included, as well as the influence of nutrient deficiency and ion toxicity on root growth. Examples illustrate simulations with different levels of model complexity, depending on the amount of information available to the user. At the simplest level, root growth is simulated as a function of mechanical soil strength only. Application of the intermediate level with root water and nutrient uptake simulates the influence of timing and amount of NO3 application on leaching. The most comprehensive level includes simulation of root and shoot growth as influenced by soil water and nutrient status, temperature, and dynamic allocation of assimilate to root and shoot.  相似文献   

8.
Changes in function as an individual root ages has important implications for understanding resource acquisition, competitive ability and optimal lifespan. Both nitrate uptake and respiration rates of differently aged fine roots of grape (Vitis rupestris x V. riparia cv. 3309 C) were measured. The resulting data were then used to simulate nitrate uptake efficiency and nutrient depletion as a function of root age. Both nitrate uptake and root respiration declined remarkably quickly with increasing root age. The decline in both N uptake and root respiration corresponded with a strong decline in root N concentration, suggesting translocation of nitrogen out of the roots. For simulations where no nutrient depletion occurs at the root surface, daily uptake efficiency was maximal at root birth and lifetime nitrate uptake efficiency slowly increased as the roots aged. Simulations of growth of roots into unoccupied soil using a solute transport model indicated the advantage of high uptake capacity in new roots under competitive conditions where nitrate availability is very transitory.  相似文献   

9.
The aim of this research was to investigate the effect of arbuscular mycorrhizal (AM) colonisation on root morphology and nitrogen uptake capacity of carob ( Ceratonia siliqua L.) under high and low nutrient conditions. The experimental design was a factorial arrangement of presence/absence of mycorrhizal fungus inoculation ( Glomus intraradices) and high/low nutrient status. Percent AM colonisation, nitrate and ammonium uptake capacity, and nitrogen and phosphorus contents were determined in 3-month-old seedlings. Grayscale and colour images were used to study root morphology and topology, and to assess the relation between root pigmentation and physiological activities. AM colonisation lead to a higher allocation of biomass to white and yellow parts of the root. Inorganic nitrogen uptake capacity per unit root length and nitrogen content were greatest in AM colonised plants grown under low nutrient conditions. A better match was found between plant nitrogen content and biomass accumulation, than between plant phosphorus content and biomass accumulation. It is suggested that the increase in nutrient uptake capacity of AM colonised roots is dependent both on changes in root morphology and physiological uptake potential. This study contributes to an understanding of the role of AM fungi and root morphology in plant nutrient uptake and shows that AM colonisation improves the nitrogen nutrition of plants, mainly when growing at low levels of nutrients.  相似文献   

10.
Simulation models of nutrient uptake of root systems starting with one-dimensional single root approaches up to complex three-dimensional models are increasingly used for examining the interacting of root distribution and nutrient uptake. However, their accuracy was seldom systematically tested. The objective of the study is to compare one-dimensional and two-dimensional modelling approaches and to test their applicability for simulation of nutrient uptake of heterogeneously distributed root systems giving particular attention to the impact of spatial resolution. Therefore, a field experiment was carried out with spring barley (Hordeum vulgare L. cv. Barke) in order to obtain data of in situ root distribution patterns as model input. Results indicate that a comparable coarse spatial resolution can be used with sufficient modelling results when a steady state approximation is applied to the sink cells of the two-dimensional model. Furthermore, the accuracy of the model was clearly improved compared to a simple zero sink approach assuming both near zero concentrations within the sink cell and a linear gradient between the sink cell and its adjacent neighbours. However, for modelling nitrate uptake of a heterogeneous root system a minimum number of grid cells is still necessary. The tested single root approach provided a computational efficient opportunity to simulate nitrate uptake of an irregular distributed root system. Nevertheless, two-dimensional models are better suited for a number of applications (e.g. surveys made on the impact of soil heterogeneity on plant nutrient uptake). Different settings for the suggested modelling techniques are discussed.  相似文献   

11.
Summary The growth of roots of maize, sorghum and soybean is modelled through beds of spherical aggregates. Effects of aggregate size and strength, and effects of the spread or distribution of aggregate strengths are investigated.This is achieved by a combination of a statistical model for soil structure with a statistical model for the penetration behaviour of a root at a void/aggregate interface. It is shown that the behaviour of a root at such an interfac is dependent on the previous history of the root in its passage through the soil.It is concluded that the smaller the aggregate size, the greater is the nutrient availability per unit length of root. The influence of aggregate size decreases with increasing soil strength.An increase in aggregate strength reduces the availability of nutrients per unit length of root. However, the rate of nutrient uptake per root axis goes through a minimum at a strength (for maize) of around 80 per cent of the maximum limiting aggregate strength for root penetration. An increase in the spread of aggregate strengths usually results in a proportional increase in nutrient availability. This effect is more pronounced with smaller aggregate sizes.  相似文献   

12.
Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary.The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets.Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop.  相似文献   

13.
Potatoes were grown on two contrasting soils but in adjacent sites to investigate the effect of soil type on tuber production, nutrient uptake and nutrient inflow rates (uptake rate per unit length of root). The year of the study was wetter than normal. Tuber growth, root growth and nutrient uptake were all greater on the coarse rather than the fine-textured soil. However there was no difference in nutrient inflow rates between plants growing in the two soils. Therefore, it was concluded that the crop on the finer textured soil did not have an adequate nutrient supply, particularly of N, relative to the crop on the coarser-textured soil. The reasons for the low supply of nitrogen in the fine textured soil are not clear, but it might have been due to the smaller root system or to enhanced losses of nitrogen by denitrification caused by the combination of soil physical properties and poor drainage in a wet year.  相似文献   

14.
Abstract. The effect upon potential maximum nitrogen uptake rate of root morphology and nitrogen availability in soil was investigated using a simple nutrient transport model. Parameter values appropriate to an ecological or an agricultural context were introduced from the literature. The model predicted that the maximum uptake rate of nitrate was morphology-dependent only at extremely low concentrations. For ammonium, this was so for all realistic concentrations, assuming a high potential maximum uptake rate. The important concentration range for ammonium was two orders of magnitude greater than that for nitrate. With a lower potential maximum uptake rate of ammonium, root morphology was important below 15/igNg' soil, the concentration range in this case being a single order of magnitude greater than that for nitrate. The effects of root hairs were to decrease the threshold concentration for morphology-dependence, and to minimize root dry weight per unit volume of soil needed to maintain maximum nitrogen uptake rate. The effects of simultaneous mass flow of solution were negligible. The possible significance of these effects upon plant growth are discussed in relation to nitrogen availability.  相似文献   

15.
Nutrient uptake and allocation at steady-state nutrition   总被引:13,自引:0,他引:13  
Ingestad, T. and Ågren, G. I. 1988. Nutrient uptake and allocation at steady-state nutrition. - Physiol. Plant. 72: 450–459. Net nutrient uptake and translocation rates are discussed for conditions of steady-state nutrition and growth. Under these conditions, the relative uptake rate is equal to the relative growth rate, for whole plants as well as for plant parts, since the root/shoot ratio and internal concentrations remain stable. The nutrient productivity and the minimum internal concentration are parameters characteristic for the plant and the nutrient. A conceptual, mathematical model, based on these two fundamental parameters is used for calculation and prediction of the net nutrient uptake rate, which is required to maintain steady-state nutrition at a specified internal nutrient concentration or relative growth rate. When uptake rate is expressed on the basis of the root growth rate, there is, up to optimum, a strong linear relationship between uptake rate and the internal concentration of the limiting nutrient. More complicated and less consistent relationships are obtained when uptake rate is related to root biomass. The limiting factor for suboptimum uptake is the amount of nutrients becoming available at the root surface. When replenishment is efficient, e.g. with vigorous stirring, the concentration requirement at the root surface appears to be extremely low, even at optimum. In the suboptimum range of nutrition, the effect of nutrient status on root growth rate is a critical factor with a strong feed-back on nutrition, growth and allocation. At supraoptimum conditions, the uptake mechanism is interpreted as a protection against too high uptake rates and internal concentrations at high external concentration. In birch (Betula pendula Roth.), the allocation of nitrogen to the shoots is high compared to that of potassium and also to that of phosphorus at low nitrogen or phosphorus status. With decreasing stress, phosphorus allocation becomes more and more similar to nitrogen allocation. The formulation of a mathematical model for calculation of allocation of biomass and nutrients requires more exact information on the quantitative dependence of the growth-regulating processes on nutrition.  相似文献   

16.
Ammonium sulphate is a major component of the air pollutants deposited on forests in the Netherlands. Different amounts of NH4 + were added to Douglas-fir seedlings grown in tall containers of sand, to study the influence of high concentrations of NH4 + in the soil on the development of fine roots and the effects of nitrogen uptake on rhizosphere pH. At the end of this eight-month experiment part of the ammonium appeared to have nitrified into nitrate. High doses of ammonium negatively affected root length and root length per unit of dry matter (specific root length). Although Douglas fir shows a preferential ammonium uptake in nutrient solutions the increases in the pH of the rhizosphere in this experiment indicate that nitrogen was mostly taken up as nitrate. When the ammonium concentration in the soil is low, it cannot be taken up readily because of its low mobility in soil. Shoot growth was stimulated by high availability of nitrogen. The possible effects of high doses of ammonium on long-term forest vitality are discussed.  相似文献   

17.
Summary The analog described in Part I is used to investigate quantitatively the the effects of pattern and density on the uptake and uptake rate of nutrients which move to plant roots by diffusion. The uptake by two roots is considered first, to illustrate the competitive effect. The results for multiple root systems are given for a variety of different soil and plant parameters at different times and demonstrate the importance of pattern and density in the uptake of different plant nutrients in both competitive and non competitive situations. Pattern can decrease the uptake by root systems by at least 75 per cent, depending on the value of the diffusion coefficient, time, and root density. Graphs of two indices of dispersion against uptake are given so that the effect of any pattern can be estimated. A procedure is outlined which enables the uptake after any time by a developing root system to be predicted and compared with a theoretical maximum. If the uptake is known, then the graphs show whether soil or plant parameters are limiting uptake.  相似文献   

18.
以中亚热带常绿阔叶林外生菌根树种罗浮栲和丛枝菌根树种木荷为研究对象,采用根袋法进行野外原位氮添加试验,研究了细根形态性状(比根长、比表面积、组织密度、平均根直径)和构型性状(分枝数、分枝比、根长增长速率、根尖密度、分枝密度),分析不同菌根树种细根形态和构型性状对氮沉降的响应.结果表明:随序级增加,外生和丛枝菌根树种细根...  相似文献   

19.
Zhuang  J.  Yu  G.R.  Nakayama  K. 《Plant and Soil》2001,235(2):135-142
Root length density is an important parameter in crop growth simulation and in evaluating consequences of root pattern on crop water and nutrient uptake. In this study, a scaling model was presented for estimating the profile distribution of root length density of maize (Zea mays L.). The model inputs are root length data of a reference profile and bulk densities of soil layers, as well as root length data in the first soil layer of a field profile to be investigated. Using the root length data of 10 soil profiles investigated over 2 years, the model was examined. The results show that the proposed scaling approach is effective in estimating the root length density of each layer of soil in the field profile. The relative root mean square error (RRMSE) of the developed scaling model was 25.28%, while that of the traditional exponential model was 39.53%. The scaling approach would facilitate determination of heterogeneous distributions of root length densities in the field.  相似文献   

20.
Despite the widespread prevalence of root loss in plants, its effects on crop productivity are not fully understood. While root loss reduces the capacity of plants to take up water and nutrients from the soil, it may provide benefits by decreasing the resources required to maintain the root system. Here, we simulated a range of root phenotypes in different soils and root loss scenarios for barley (Hordeum vulgare), common bean (Phaseolus vulgaris), and maize (Zea mays) using and extending the open-source, functional–structural root/soil simulation model OpenSimRoot. The model enabled us to quantify the impact of root loss on shoot dry weight in these scenarios and identify in which scenarios root loss is beneficial, detrimental, or has no effect. The simulations showed that root loss is detrimental for phosphorus uptake in all tested scenarios, whereas nitrogen uptake was relatively insensitive to root loss unless main root axes were lost. Loss of axial roots reduced shoot dry weight for all phenotypes in all species and soils, whereas lateral root loss had a smaller impact. In barley and maize plants with high lateral branching density that were not phosphorus-stressed, loss of lateral roots increased shoot dry weight. The fact that shoot dry weight increased due to root loss in these scenarios indicates that plants overproduce roots for some environments, such as those found in high-input agriculture. We conclude that a better understanding of the effects of root loss on plant development is an essential part of optimizing root system phenotypes for maximizing yield.

Root loss has a major impact on crop development and nutrient uptake; modeling reveals that the magnitude of the effect depends on species, root phenotype, and soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号