首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we report that bacteriophage T4 RNA ligase 2 (Rnl2) is an efficient catalyst of RNA ligation at a 3'-OH/5'-PO(4) nick in a double-stranded RNA or an RNA.DNA hybrid. The critical role of the template strand in approximating the reactive 3'-OH and 5'-PO(4) termini is underscored by the drastic reductions in the RNA-sealing activity of Rnl2 when the duplex substrates contain gaps or flaps instead of nicks. RNA nick joining requires ATP and a divalent cation cofactor (either Mg or Mn). Neither dATP, GTP, CTP, nor UTP can substitute for ATP. We identify by alanine scanning seven functionally important amino acids (Tyr-5, Arg-33, Lys-54, Gln-106, Asp-135, Arg-155, and Ser-170) within the N-terminal nucleotidyl-transferase domain of Rnl2 and impute specific roles for these residues based on the crystal structure of the AMP-bound enzyme. Mutational analysis of 14 conserved residues in the C-terminal domain of Rnl2 identifies 3 amino acids (Arg-266, Asp-292, and Glu-296) as essential for ligase activity. Our findings consolidate the evolutionary connections between bacteriophage Rnl2 and the RNA-editing ligases of kinetoplastid protozoa.  相似文献   

2.
Chlorella virus DNA ligase (ChVLig) has pluripotent biological activity and an intrinsic nick-sensing function. ChVLig consists of three structural modules that envelop nicked DNA as a C-shaped protein clamp: a nucleotidyltransferase (NTase) domain and an OB domain (these two are common to all DNA ligases) as well as a distinctive β-hairpin latch module. The NTase domain, which performs the chemical steps of ligation, binds the major groove flanking the nick and the minor groove on the 3'-OH side of the nick. Here we performed a structure-guided mutational analysis of the NTase domain, surveying the effects of 35 mutations in 19 residues on ChVLig activity in vivo and in vitro, including biochemical tests of the composite nick sealing reaction and of the three component steps of the ligation pathway (ligase adenylylation, DNA adenylylation, and phosphodiester synthesis). The results highlight (i) key contacts by Thr-84 and Lys-173 to the template DNA strand phosphates at the outer margins of the DNA ligase footprint; (ii) essential contacts of Ser-41, Arg-42, Met-83, and Phe-75 with the 3'-OH strand at the nick; (iii) Arg-176 phosphate contacts at the nick and with ATP during ligase adenylylation; (iv) the role of Phe-44 in forming the protein clamp around the nicked DNA substrate; and (v) the importance of adenine-binding residue Phe-98 in all three steps of ligation. Kinetic analysis of single-turnover nick sealing by ChVLig-AMP underscored the importance of Phe-75-mediated distortion of the nick 3'-OH nucleoside in the catalysis of DNA 5'-adenylylation (step 2) and phosphodiester synthesis (step 3). Induced fit of the nicked DNA into a distorted conformation when bound within the ligase clamp may account for the nick-sensing capacity of ChVLig.  相似文献   

3.
The end-healing and end-sealing steps of the phage T4-induced RNA restriction-repair pathway are performed by two separate enzymes, a bifunctional polynucleotide 5'-kinase/3'-phosphatase and an ATP-dependent RNA ligase. Here we show that a single trifunctional baculovirus enzyme, RNA ligase 1 (Rnl1), catalyzes the identical set of RNA repair reactions. Three enzymatic activities of baculovirus Rnl1 are organized in a modular fashion within a 694-amino acid polypeptide consisting of an autonomous N-terminal RNA-specific ligase domain, Rnl1-(1-385), and a C-terminal kinase-phosphatase domain, Rnl1-(394-694). The ligase domain is itself composed of two functional units. The N-terminal module Rnl1-(1-270) contains essential nucleotidyltransferase motifs I, IV, and V and suffices for both enzyme adenylylation (step 1 of the ligation pathway) and phosphodiester bond formation at a preactivated RNA-adenylate end (step 3). The downstream module extending to residue 385 is required for ligation of a phosphorylated RNA substrate, suggesting that it is involved specifically in the second step of the end-joining pathway, the transfer of AMP from the ligase to the 5'-PO(4) end to form RNA-adenylate. The end-healing domain Rnl1-(394-694) consists of a proximal 5'-kinase module with an essential P-loop motif ((404)GSGKS(408)) and a distal 3'-phosphatase module with an essential acylphosphatase motif ((560)DLDGT(564)). Our findings have implications for the evolution of RNA repair systems and their potential roles in virus-host dynamics.  相似文献   

4.
Structure-function analysis of yeast tRNA ligase   总被引:2,自引:1,他引:1  
Trl 1 is an essential 827-amino-acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two catalytic domains--an N-terminal adenylyltransferase/ligase component (amino acids 1-388) and a C-terminal 5'-kinase/cyclic phosphodiesterase component (amino acids 389-827)--that can function in tRNA splicing in vivo when expressed as separate polypeptides. Sedimentation analysis indicates that the ligase and kinase/CPD domains are monomeric proteins that do not form a stable complex in trans. To understand the structural requirements for the RNA ligase component, we performed a mutational analysis of amino acids that are conserved in Trl1 homologs from other fungi. Alanine scanning identified 23 new residues as essential for Trl1-(1-388) activity in vivo. Structure-activity relationships at these positions, and four essential residues defined previously, were clarified by introducing 50 different conservative substitutions. Lethal mutations of Lys114, Glu184, Glu266, and Lys284 abolished Trl1 adenylyltransferase activity in vitro. The essential elements embrace (1) putative equivalents of nucleotidyltransferase motifs I, Ia, III, IV, and V found in DNA ligases, T4 RNA ligase 2, and mRNA capping enzymes; (2) an N-terminal segment shared with the T4 RNA ligase 1 subfamily only; and (3) a constellation of conserved residues specific to fungal tRNA splicing enzymes. We identify yeastlike tRNA ligases in the proteomes of Leishmania and Trypanosoma. These findings recommend tRNA ligase as a target for antifungal and antiprotozoal drug discovery.  相似文献   

5.
Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a polynucleotide ligase family that includes the trypanosome RNA-editing ligases and putative RNA ligases encoded by eukaryotic viruses and archaea. Here we analyzed 12 individual amino acids of Rnl2 that were identified by alanine scanning as essential for strand joining. We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of ligase adenylylation and phosphodiester bond formation. The essential residues of Rnl2 are located within conserved motifs that define a superfamily of nucleotidyl transferases that act via enzyme-(lysyl-N)-NMP intermediates. Our mutagenesis results underscore a shared active site architecture in Rnl2-like ligases, DNA ligases, and mRNA capping enzymes. They also highlight two essential signature residues, Glu(34) and Asn(40), that flank the active site lysine nucleophile (Lys(35)) and are unique to the Rnl2-like ligase family.  相似文献   

6.
T4 RNA ligase 1 (Rnl1) is a tRNA repair enzyme that thwarts a tRNA-damaging host response to virus infection. The 374-aa Rnl1 protein consists of an N-terminal nucleotidyltransferase domain fused to a unique C-terminal domain composed of 10 alpha helices. We exploited an in vitro tRNA splicing system to demonstrate that Rnl1 has an inherent specificity for sealing tRNA with a break in the anticodon loop. The tRNA specificity is imparted by the C domain, any deletion of which caused the broken tRNA to be sealed as poorly as the linear intron in vitro and also abolished Rnl1 tRNA splicing activity in vivo. Deletion analysis demarcated Rnl1-(1-254) as a minimal catalytic domain of Rnl1, capable of all chemical steps of the nonspecific RNA ligation reaction. Alanine scanning of the N domain identified Ser103, Leu104, Lys117, and Ser118 as important for pRNA ligation in vitro and tRNA repair in vivo.  相似文献   

7.
T4 RNA ligase 1 (Rnl1) is a tRNA repair enzyme that circumvents an RNA-damaging host antiviral response. Whereas the three-step reaction scheme of Rnl1 is well established, the structural basis for catalysis has only recently been appreciated as mutational and crystallographic approaches have converged. Here we performed a structure-guided alanine scan of nine conserved residues, including side chains that either contact the ATP substrate via adenine (Leu179, Val230), the 2'-OH (Glu159), or the gamma phosphate (Tyr37) or coordinate divalent metal ions at the ATP alpha phosphate (Glu159, Tyr246) or beta phosphate (Asp272, Asp273). We thereby identified Glu159 and Tyr246 as essential for RNA sealing activity in vitro and for tRNA repair in vivo. Structure-activity relationships at Glu159 and Tyr246 were clarified by conservative substitutions. Eliminating the phosphate-binding Tyr37, and the magnesium-binding Asp272 and Asp273 side chains had little impact on sealing activity in vitro or in vivo, signifying that not all atomic interactions in the active site are critical for function. Analysis of mutational effects on individual steps of the ligation pathway underscored how different functional groups come into play during the ligase-adenylylation reaction versus the subsequent steps of RNA-adenylylation and phosphodiester formation. Moreover, the requirements for sealing exogenous preformed RNA-adenylate are more stringent than are those for sealing the RNA-adenylate intermediate formed in situ during ligation of a 5'-PO4 RNA.  相似文献   

8.
Trl1 is an essential 827 amino acid enzyme that executes the end-healing and end-sealing steps of tRNA splicing in Saccharomyces cerevisiae. Trl1 consists of two domains—an N-terminal ligase component and a C-terminal 5′-kinase/2′,3′-cyclic phosphodiesterase (CPD) component—that can function in tRNA splicing in vivo when expressed as separate polypeptides. To understand the structural requirements for the kinase-CPD domain, we performed an alanine scan of 30 amino acids that are conserved in Trl1 homologs from other fungi. We thereby identified four residues (Arg463, His515, Thr675 and Glu741) as essential for activity in vivo. Structure–function relationships at these positions, and at four essential or conditionally essential residues defined previously (Asp425, Arg511, His673 and His777), were clarified by introducing conservative substitutions. Biochemical analysis showed that lethal mutations of Asp425, Arg463, Arg511 and His515 in the kinase module abolished polynucleotide kinase activity in vitro. We report that a recently cloned 1104 amino acid Arabidopsis RNA ligase functions in lieu of yeast Trl1 in vivo and identify essential side chains in the ligase, kinase and CPD modules of the plant enzyme. The plant ligase, like yeast Trl1 but unlike T4 RNA ligase 1, requires a 2′-PO4 end for tRNA splicing in vivo.  相似文献   

9.
NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.  相似文献   

10.
Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.  相似文献   

11.
T4 RNA ligase 2 (Rnl2) exemplifies an RNA ligase family that includes the RNA editing ligases (RELs) of Trypanosoma and Leishmania. The Rnl2/REL enzymes are defined by essential signature residues and a unique C-terminal domain, which we show is essential for sealing of 3'-OH and 5'-PO4 RNA ends by Rnl2, but not for ligase adenylation or phosphodiester bond formation at a preadenylated AppRNA end. The N-terminal segment Rnl2(1-249) of the 334 aa Rnl2 protein comprises an autonomous adenylyltransferase/AppRNA ligase domain. We report the 1.9 A crystal structure of the ligase domain with AMP bound at the active site, which reveals a shared fold, catalytic mechanism, and evolutionary history for RNA ligases, DNA ligases, and mRNA capping enzymes.  相似文献   

12.
Vaccinia topoisomerase, a eukaryotic type IB enzyme, catalyzes relaxation of supercoiled DNA by cleaving and rejoining DNA strands through a DNA- (3'-phosphotyrosyl)-enzyme intermediate. We have performed a kinetic analysis of mutational effects at four essential amino acids: Arg-130, Gly-132, Tyr-136 and Lys-167. Arg-130, Gly-132 and Lys-167 are conserved in all members of the type IB topoisomerase family. Tyr-136 is conserved in all poxvirus topoisomerases. We show that Arg-130 and Lys-167 are required for transesterification chemistry. Arg-130 enhances the rates of both cleavage and religation by 10(5). Lys-167 enhances the cleavage and religation reactions by 10(3) and 10(4), respectively. An instructive distinction between these two essential residues is that Arg-130 cannot be replaced by lysine, whereas substituting Lys-167 by arginine resulted in partial restoration of function relative to the alanine mutant. We propose that both basic residues interact directly with the scissile phosphate at the topoisomerase active site. Mutations at positions Gly-132 and Tyr-136 reduced the rate of strand cleavage by more than two orders of magnitude, but elicited only mild effects on religation rate. Gly-132 and Tyr-136 are suggested to facilitate a pre-cleavage activation step. The results of comprehensive mutagenesis of the vaccinia topoisomerase illuminate mechanistic and structural similarities to site-specific recombinases.  相似文献   

13.
T4 RNA ligase 2 (Rnl2) efficiently seals 3'-OH/5'-PO4 RNA nicks via three nucleotidyl transfer steps. Here we show that the terminal 3'-OH at the nick accelerates the second step of the ligase pathway (adenylylation of the 5'-PO4 strand) by a factor of 1000, even though the 3'-OH is not chemically transformed during the reaction. Also, the terminal 2'-OH at the nick accelerates the third step (attack of the 3'-OH on the 5'-adenylated strand to form a phosphodiester) by a factor of 25-35, even though the 2'-OH is not chemically reactive. His-37 of Rnl2 is uniquely required for step 3, providing a approximately 10(2) rate acceleration. Biochemical epistasis experiments show that His-37 and the RNA 2'-OH act independently. We conclude that the broken RNA end promotes catalysis of its own repair by Rnl2 via two mechanisms, one of which (enhancement of step 3 by the 2'-OH) is specific to RNA ligation. Substrate-assisted catalysis provides a potential biochemical checkpoint during nucleic acid repair.  相似文献   

14.
In a survey for unknown bioactive peptides in frog (Rana catesbeiana) brain and intestine, we isolated four novel peptides that exhibit potent stimulant effects on smooth muscle preparation of guinea pig ileum. By microsequencing and synthesis, these peptides were identified as Lys- Pro- Ser- Pro- Asp- Arg- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin A), Tyr- Lys- Ser- Asp- Ser- Phe- Tyr- Gly- Leu- Met- NH2 (ranatachykinin B), His- Asn- Pro- Ala- Ser- Phe- Ile- Gly- Leu- Met- NH2 (ranatachykinin C) and Lys- Pro- Ans- Pro- Glu- Arg- Phe- Tyr- Ala- Pro- Met- NH2 (ranatachykinin D). Ranatachykinin (RTK) A, B and C conserve the C- terminal sequence, Phe- X- Gly- Leu- Met- NH2, which is common to known members of the tachykinin family. On the other hand, RTK-D has a striking feature in its C-terminal sequence, Phe- Tyr- Ala- Pro- Met- NH2, which has never been found in other known tachykinins, and may constitute a new subclass in the tachykinin family.  相似文献   

15.
C K Ho  S Shuman 《Journal of virology》1996,70(4):2611-2614
Alanine-substitution mutations were targeted to 14 amino acid residues within the double-stranded (ds) RNA binding motif (dsRBM) of the vaccinia virus E3 protein. Substitutions at six positions--Glu-124, Phe-135, Phe-148, Lys-167, Arg-168, and Lys-171--caused significant reductions in dsRNA binding. These six residues are conserved in the two dsRBMs for which structural information is available (Escherichia coli RNase III and Drosophila melanogaster staufen) and in many other members of the dsRBM protein family. Residues we show to be important for dsRNA binding by vaccinia virus E3 map to the same face of the dsRBM structure and are thus likely to compose part of the RNA binding site.  相似文献   

16.
The resonant recognition model (RRM) is a model which treats the protein sequence as a discrete signal. It has been shown previously that certain periodicities (frequencies) in this signal characterise protein biological function. The RRM was employed to determine the characteristic frequencies of the hormone prolactin (PRL), and to identify amino acids ('hot spots') mostly contributing to these frequencies and thus proposed to mostly contribute to the biological function. The predicted 'hot spot' amino acids, Phe-19, Ser-26, Ser-33, Phe-37, Phe-40, Gly-47, Gly-49, Phe-50, Ser-61, Gly-129, Arg-176, Arg-177, Cys-191 and Arg-192 are found in the highly conserved amino-terminal and C-terminus regions of PRL. Our predictions agree with previous experimentally tested residues by site-direct mutagenesis and photoaffinity labelling.  相似文献   

17.
RNA ligase type 1 from bacteriophage T4 (Rnl1) is involved in countering a host defense mechanism by repairing 5'-PO4 and 3'-OH groups in tRNA(Lys). Rnl1 is widely used as a reagent in molecular biology. Although many structures for DNA ligases are available, only fragments of RNA ligases such as Rnl2 are known. We report the first crystal structure of a complete RNA ligase, Rnl1, in complex with adenosine 5'-(alpha,beta-methylenetriphosphate) (AMPcPP). The N-terminal domain is related to the equivalent region of DNA ligases and Rnl2 and binds AMPcPP but with further interactions from the additional N-terminal 70 amino acids in Rnl1 (via Tyr37 and Arg54) and the C-terminal domain (Gly269 and Asp272). The active site contains two metal ions, consistent with the two-magnesium ion catalytic mechanism. The C-terminal domain represents a new all alpha-helical fold and has a charge distribution and architecture for helix-nucleic acid groove interaction compatible with tRNA binding.  相似文献   

18.
Yeast tRNA ligase (Trl1) converts cleaved tRNA half-molecules into spliced tRNAs containing a 2'-PO4, 3'-5' phosphodiester at the splice junction. Trl1 performs three reactions: (i) the 2',3'-cyclic phosphate of the proximal fragment is hydrolyzed to a 3'-OH, 2'-PO4 by a cyclic phosphodiesterase (CPD); (ii) the 5'-OH of the distal fragment is phosphorylated by an NTP-dependent polynucleotide kinase; and (iii) the 3'-OH, 2'-PO4, and 5'-PO4 ends are sealed by an ATP-dependent RNA ligase. Trl1 consists of an N-terminal adenylyltransferase domain that resembles T4 RNA ligase 1, a central domain that resembles T4 polynucleotide kinase, and a C-terminal CPD domain that resembles the 2H phosphotransferase enzyme superfamily. Here we show that all three domains are essential in vivo, although they need not be linked in the same polypeptide. We identify five amino acids in the adenylyltransferase domain (Lys114, Glu266, Gly267, Lys284, and Lys286) that are essential for Trl1 activity and are located within motifs I (114KANG117), IV (266EGFVI270), and V (282FFKIK286) that comprise the active sites of DNA ligases, RNA capping enzymes, and T4 RNA ligases 1 and 2. Mutations K404A and T405A in the P-loop (401GXGKT405) of the central kinase-like domain had no effect on Trl1 function in vivo. The K404A and T405A mutations eliminated ATP-dependent kinase activity but preserved GTP-dependent kinase activity. A double alanine mutant in the P-loop was lethal in vivo and abolished GTP-dependent kinase activity. These results suggest that GTP is the physiological substrate and that the Trl1 kinase has a single NTP binding site of which the P-loop is a component. Two other mutations in the central domain were lethal in vivo and either abolished (D425A) or severely reduced (R511A) GTP-dependent RNA kinase activity in vitro. Mutations of the signature histidines of the CPD domain were either lethal (H777A) or conferred a ts growth phenotype (H673A).  相似文献   

19.
The EphA2 receptor is overexpressed in glioblastoma multiforme and has been to shown to contribute to cell transformation, tumor initiation, progression, and maintenance. EphrinA1 (eA1) is a preferred ligand for the receptor. Treatment with monomeric eA1, the form of eA1 found in the extracellular environment, causes receptor phosphorylation, internalization, and down-regulation with subsequent anti-tumor effects. Here, we investigated the structure-function relationship of a monomeric eA1 focusing on its G-H loop ((108)FQRFTPFTLGKEFKE(123)G), a highly conserved region among eAs that mediates binding to their receptors. Alanine substitution mutants of the G-H loop amino acids were transfected into U-251 MG glioblastoma multiforme cells, and functional activity of each mutant in conditioned media was assessed by EphA2 down-regulation, ERK and AKT activation and cellular response assays. Alanine substitutions at positions Pro-113 Thr-115, Gly-117, Glu-122, and also Gln-109 enhanced the EphA2 receptor down-regulation and decreased p-ERK and p-AKT. Substitution mutants of eA1 at positions Phe-108, Arg-110, Phe-111, Thr-112, Phe-114, Leu-116, Lys-118, Glu-119, and Phe-120 had a deleterious effect on EphA2 down-regulation when compared with eA1-WT. Mutants at positions Phe-108, Lys-18, Lys-121, Gly-123 retained similar properties to eA1-WT. Recombinant eA1-R110A, -T115A, -G117A, and -F120A have been found to exhibit the same characteristics as the ligands contained in the conditioned media mainly due to the differences in their binding to the receptor. Thus, we have identified variants of eA1 that possess either superagonistic or antagonistic properties. These new findings will be important in the understanding of the receptor/ligand interactions and in further design of anti-cancer therapies targeting the eA/EphA system.  相似文献   

20.
Transfer RNA (Gm18) methyltransferase (TrmH) catalyzes the methyl transfer from S-adenosyl-L-methionine (AdoMet) to the 2'-OH group of the G18 ribose in tRNA. To identify amino acid residues responsible for the tRNA recognition, we have carried out the alanine substitution mutagenesis of the basic amino acid residues that are conserved only in TrmH enzymes and not in the other SpoU proteins. We analyzed the mutant proteins by S-adenosyl-L-homocysteine affinity column chromatography, gel mobility shift assay, and kinetic assay of the methyl transfer reaction. Based on these biochemical studies and the crystal structure of TrmH, we found that the conserved residues can be categorized according to their role (i) in the catalytic center (Arg-41), (ii) in the initial site of tRNA binding (Lys-90, Arg-166, Arg-168, and Arg-176), (iii) in the tRNA binding site required for continuation the catalytic cycle (Arg-8, Arg-19, and Lys-32), (iv) in the structural element involved in release of S-adenosyl-L-homocysteine (Arg-11-His-71-Met-147 interaction), (v) in the assisted phosphate binding site (His-34), or (vi) in an unknown function (Arg-109). Furthermore, the difference between the Kd and Km values for tRNA suggests that the affinity for tRNA is enhanced in the presence of AdoMet. To confirm this idea, we carried out the kinetic studies, a gel mobility shift assay with a mutant protein disrupted in the catalytic center, and the analytical gel-filtration chromatography. Our experimental results clearly show that the enzyme has a semi-ordered sequential mechanism in which AdoMet both enhances the affinity for tRNA and induces formation of the tetramer structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号