首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements were made of clonogenic cell survival in rat rhabdomyosarcoma tumors as a function of time following in situ irradiation with single or fractionated doses of 225-kVp X rays or with 557-MeV/u neon ions in the distal position of a 4-cm extended-peak ionization region. Single doses of 20 Gy of X rays or 7 Gy of peak neon ions reduced the initial surviving fraction to approximately 0.025 for each modality. Daily fractionated doses (four fractions in 3 days) of either peak neon ions (1.75 Gy per fraction) or X rays (6 Gy per fraction) achieved a cell survival of approximately 0.02-0.03 after the fourth dose of radiation. In the single-dose experiments, significant 5- and 10-fold decreases in the fraction of clonogenic cells were observed between the third and fourth days after irradiation with peak neon ions and X rays, respectively. After the sixth day postirradiation, the residual clonogenic cells exhibited a rapid burst of proliferation leading to doubling times for the surviving cell fractions of approximately 1.5 days. Radiation-induced growth delay was consistent with the cellular repopulation dynamics. In the fractionated-dose experiments with both radiation modalities, a large delayed decrease in cell survival was observed at 1-3 days after completion of the fractionated-dose schedule. Cellular repopulation was consistent with postirradiation tumor volume regression and regrowth for both radiation modalities. The extent of decrease in survival following the four-fraction radiation schedule was approximately two times greater in X-irradiated than in neon-ion-irradiated tumors that produced the same survival level immediately after the fourth dose. Mechanisms underlying the marked reduction in cell survival 3-4 days postirradiation are discussed, including the possible role of a toxic host cell response against the irradiated tumor cells.  相似文献   

2.
The relationship of clonogenic cells, cellular radiation sensitivity at tumor control does in vivo, and tumor rescuing units at different tumor sizes was investigated in the human squamous cell carcinoma FaDu growing in NCr/Sed nude mice. The composition of the tumors was determined in single cell suspensions and compared to tumor control data after single-dose irradiation. To avoid the influence of varying oxygen concentrations in the tumors, all irradiations were performed under clamp hypoxia. Nude mice and animals further immunosuppressed by 6-Gy whole-body irradiation were used to assess the immunological effects. The numbers of total cells, cells excluding trypan blue, host cells, and colony-forming cells increased linearly with the weight of FaDu tumors. Comparable results were obtained for cell suspensions prepared from tumors growing in nude of pretreated nude mice. The radiation dose required to control 50% of tumors (TCD50) of different sizes between 36 and 470 mm3 increased from 52.1 to 60.1 Gy when the tumors were maintained in normal nude mice and from 50.8 to 61.3 Gy in whole-body-irradiated mice. The D0 of FaDu cells in vivo was calculated by regression analysis of TCD50 vs the logarithm of the clonogenic cell number, assuming an oxygen enhancement ratio of 3.0. The resultant D0S of 1.1 and 1.2 Gy in vivo correspond well to the radiosensitivity of FaDu cells in vitro determined previously. Assuming the single-hit multitarget model of cell killing and extrapolation numbers between 2 and 20, the mean number of tumor rescuing units would be 10(5) to 10(6) for a 100-mm3 tumor growing in whole-body-irradiated nude mice. Comparison of the number of tumor rescuing units to the estimated number of clonogenic cells does not conflict with the assumption that every surviving clonogenic cell is able to repopulate FaDu tumors after irradiation; however, it seems more likely that more than one clonogenic cells is necessary. The proportion of tumor rescuing units in the clonogenic cell population is independent of tumor size.  相似文献   

3.
The kinetics of repopulation of clonogens in skin after fractionated X-ray exposures was studied in a series of experiments using a top-up design. The feet of mice were exposed to small X-ray doses (1.5 or 2 Gy), given two or three times a day on consecutive days with a minimum interfraction interval of 8 h. A single top-up dose of d(4)-Be neutrons was then given at various intervals after the last X-ray fraction, typically on Days 1,4,8, 15, and 19. The acute skin reaction produced was scored an analyzed by both a standard 23-day averaging and a 7-day averaging procedure. Either method gave similar results and led to the same conclusions. The amount of top-up dose needed to produce a fixed skin reaction was used as a measure of the net effect of the X-ray treatments. This net effect is a result of the initial reduction in skin clonogens due to X rays, and their repopulation before the top-up dose was given. Repopulation was not detected during any of these courses of fractionated treatment, up to an overall time of at least 12 and possibly 16 days. On completion of X-ray schedules lasting 6-16 days, repopulation started 4 days later. In contrast, this delay lengthened to approximately 8 days for shorter overall treatment times of 3-4 days. Once repopulation started, it proceeded rapidly over 11 days so that by 15 days after the cessation of X rays, the skin was restored almost to its normal state with respect to radiosensitivity. The residual damage from Day 15 to Day 19 postirradiation was 3-13% of a full-effect level. The rate of repopulation can be expressed as a clonogen doubling time (Tclon), assuming that an average skin reaction of 1.5 is equivalent to a clonogen surviving fraction of 1.7 x 10(-5). Tclon varied inversely with the amount of initial damage inflicted by the X rays, with the shortest values (1-1.3 days) seen following X-ray doses that gave an initial damage level of 60-80% of full effect. These data are consistent with a hypothesis that damage is "sensed" only 10-12 days after the first X-ray fraction, which provides the stimulus for repopulation of the target cells in the basal layer, the keratinoblasts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
To systematically study the selection of radioresistant cells in clinically advanced breast cancer, a model system was generated by treating MDA-MB231 breast cancer cells with fractionated gamma radiation. A clonogenic assay of the surviving cell populations showed that 2-6 Gy per fraction resulted in a rapid selection of radioresistant populations, within three to five fractions. Irradiation with additional fractions after this initial increase did not increase the radioresistance of the surviving population significantly. Doses of 0.5 and 8 Gy per fraction were not effective in selecting radioresistant cells. To further determine the cause of the changes in radiosensitivity, 15 clones were isolated from the cell populations treated with 40 or 60 Gy with 2 or 4 Gy per fraction, respectively, and were analyzed for radiosensitivity. The average D(10) for these clones was 6.75 +/- 0.36 Gy, which was higher than that for the parental cell population (D(10) = 6.0 +/- 0.2 Gy). The operation of cell cycle checkpoints and the doubling time were similar for both the nonirradiated parental population and the isolated radioresistant subclones. In contrast, a decrease in the apoptotic potential was correlated (r = 0.7, P < 0.01) with increased survival after irradiation, suggesting that apoptosis is an important factor in determining radioresistance under our experimental conditions. We also isolated several subclones from the nonirradiated parental cell population and analyzed them to determine their radiosensitivity after fractionated irradiation. Ten fractions of 4 Gy (40 Gy in total) did not result in a significant increase in the radioresistance of these subclones compared to the irradiated cell populations. The possible mechanisms of the increased radioresistance after fractionated irradiation are discussed.  相似文献   

5.
The effect of perfluorochemicals in combination with carbogen breathing on the response of SCK tumors of mice to fractionated irradiation was investigated. The SCK tumors of A/J mice were irradiated twice a day at 3 Gy per fraction (6 Gy per day), with a total dose of 18 Gy over 3 days. When the host animals were treated with an intravenous (iv) injection of 12 ml/kg of Fluosol-DA 20% before the first daily tumor irradiation and carbogen breathing during every X irradiation with Fluosol-DA 20% injection without carbogen breathing. The hypoxic cell fraction, as determined by an in vivo-in vitro cloning assay, decreased significantly, and the intratumor pO2, as determined with microelectrodes, was markedly increased by Fluosol-DA 20% injection and carbogen breathing. It was concluded that oxygenation of hypoxic cells in SCK tumors during the course of fractionated irradiation was improved by the iv injection of Fluosol-DA 20% and carbogen breathing.  相似文献   

6.
Accelerated growth of tumor clonogens during the course of fractionated irradiation has been considered one of the major causes of radiation treatment failure. Alterations in clonogen growth rate could occur through three basic mechanisms: changes in cell-loss factor, changes in cell-cycle time, and recruitment of previously quiescent cells into the proliferative pool. This study was designed to assess changes in the cell-cycle time of clonogens of a murine fibrosarcoma during fractionated irradiation using an artificial pulmonary micrometastasis model. Lung colonies of various ages (4 h, 1 day, or 4 days) were exposed to single doses of irradiation ranging from 5-13 Gy; the fraction of surviving colonies was used to determine the preirradiation growth kinetics. The growth kinetics during fractionated irradiation was derived from colony-survival data of 4-day-old micrometastasis exposed to single doses or to 2, 5, 9, and 15 fractions separated by 4, 12, or 24-h intervals. The size of dose fractions used ranged from 1.7 to 14 Gy. The estimated clonogen doubling times before irradiation and during overall treatment periods of up to 14 days were 0.71 and 1.1 days, respectively. This significant (P less than 0.0001) increase in the doubling time was most likely a consequence of lengthening of the overall cell-cycle time of the clonogens by radiation-induced division delay. This observation suggests that accelerated growth, when it occurs in some tumors during fractionated treatment, is the result of a decreased cell-loss factor or recruitment of quiescent cells, but not a shortening of the cell-cycle time of the clonogens.  相似文献   

7.
To study the acquired radioresistance of tumor cells, a model system of two cell lines, Djungarian hamster fibroblasts (DH-TK-) and their radioresistant progeny, was established. The progeny of irradiated cells were isolated by treating the parental cell monolayer with a single dose of 20 Gy (PIC-20). The genetic and morphological features, clonogenic ability, radiosensitivity, cell growth kinetics, ability to grow in methylcellulose, and tumorigenicity of these cell lines were compared. The plating efficiency of PIC-20 cells exceeded that of DH-TK- cells. The progeny of irradiated cells were more radioresistant than parental cells. The average D0 for PIC-20 cells was 7.4 +/- 0.2 Gy, which is three times higher than that for parental cells (2.5 +/- 0.1 Gy). Progeny cell survival in methylcellulose after irradiation with a dose of 10 Gy was 15 times higher than that of DH-TK- cells. In contrast to parental cells, the progeny of irradiated cells showed fast and effective repopulation after irradiation with doses of 12.5 and 15 Gy. The tumor formation ability of irradiated progeny cells was higher than that of parental cells; after 15 Gy irradiation, PIC-20 cells produced tumors as large as unirradiated progeny of irradiated cells, whereas the tumor development of DH-TK- cells diminished by 70%. High radioresistance of progeny of irradiated cells was reproduced during the long period of cultivation (more than 80 passages). The stability of the radioresistant phenotype of PIC-20 cells allows us to investigate the possible mechanisms of acquired tumor radioresistance.  相似文献   

8.
The repopulation kinetics of the irradiated lip mucosa of mice has been investigated. Split-dose experiments showed that, in this tissue, repopulation starts within 3 days after the first irradiation and increases exponentially within 10 days. To assess the relative importance of protraction and distribution of irradiations as a function of time, 10 fractions were given in (1) 3 days (three irradiations per day with a 4-hr interval), (2) 11 days (daily fractions), or (3) two short courses, each consisting of five fractions given in 1.5 days separated by a rest period of 8 days, with an overall time of 11 days. The results show that by protracting the treatment from 3 to 11 days (with daily irradiations) repopulation accounts for recovery of approximately 13 Gy. Delivering the radiation in two short courses separated by a rest period leads to an additional recovery of approximately 5 Gy. The most plausible explanation for this observation is that repopulation is much more efficient during the rest period between the two courses than during continuous daily irradiation. Although the regimen of two short courses with a rest period spares the acute reaction, it will not enhance the late tolerance. Before thorough knowledge about the repopulation kinetics of the tumors can be gained, caution should be observed for indiscriminate use of split-course multiple-fraction-per-day (MFD) regimens for treating various tumors.  相似文献   

9.
Microbeam radiation therapy (MRT), a preclinical form of spatially fractionated radiotherapy, uses an array of microbeams of hard synchrotron X-ray radiation. Recently, compact synchrotron X-ray sources got more attention as they provide essential prerequisites for the translation of MRT into clinics while overcoming the limited access to synchrotron facilities. At the Munich compact light source (MuCLS), one of these novel compact X-ray facilities, a proof of principle experiment was conducted applying MRT to a xenograft tumor mouse model. First, subcutaneous tumors derived from the established squamous carcinoma cell line FaDu were irradiated at a conventional X-ray tube using broadbeam geometry to determine a suitable dose range for the tumor growth delay. For irradiations at the MuCLS, FaDu tumors were irradiated with broadbeam and microbeam irradiation at integral doses of either 3 Gy or 5 Gy and tumor growth delay was measured. Microbeams had a width of 50 µm and a center-to-center distance of 350 µm with peak doses of either 21 Gy or 35 Gy. A dose rate of up to 5 Gy/min was delivered to the tumor. Both doses and modalities delayed the tumor growth compared to a sham-irradiated tumor. The irradiated area and microbeam pattern were verified by staining of the DNA double-strand break marker γH2AX. This study demonstrates for the first time that MRT can be successfully performed in vivo at compact inverse Compton sources.  相似文献   

10.
The radioprotective effects of misoprostol, a synthetic stable analogue of prostaglandin E1, on spermatogonial stem cells of C3H/HeH x 101/F1 hybrid mice (3H1) were analysed by establishing dose--response relationships for stem cell killing by X-rays in mice that were pretreated with misoprostol. Spermatogonial stem cell killing was studied through determination of the percentage of tubular cross-sections showing repopulation at 10 days after irradiation. In control mice, the D0 values ranged between 1.7 and 3.6 Gy, dependent on the stage of the cycle of the seminiferous epithelium the cells were in. As found previously, proliferating spermatogonial stem cells were much more radioresistant than quiescent stem cells. In the misoprostol-pretreated animals the spermatogonial stem cells were more radioresistant, the D0 values ranging from 3.6 to 5.0 Gy. Both proliferating and quiescent spermatogonial stem cells were protected by misoprostol. As the dose--response curves in control and misoprostol-pretreated mice showed about the same extrapolation number to the y-axis it was concluded that the misoprostol pretreatment did not alter the kinetics of the repopulation process.  相似文献   

11.
Ryu JS  Um JH  Kang CD  Bae JH  Kim DU  Lee YJ  Kim DW  Chung BS  Kim SH 《Radiation research》2004,162(5):527-535
We showed that the drug sensitivity of multidrug-resistant (MDR) cells could be enhanced by fractionated irradiation. The molecular changes associated with fractionated radiation-induced chemosensitization were characterized. Irradiated cells of the multidrug-resistant CEM/MDR sublines (CEM/MDR/IR1, 2 and 3) showed a loss of P-glycoprotein (P-gp) and concurrent reduction of Ku DNA binding and DNA-PK activities with decreased level of Ku70/80 and increased level of DNA-PKcs, and these changes were followed by an increased susceptibility to anticancer drugs. These irradiated MDR cells also exhibited the reduction of other chemoresistance-related proteins, including BCL2, NF-kappaB, EGFR, MDM2 and Ku70/80, and the suppression of HIF-1alpha expression induced by hypoxia. In contrast, fractionated irradiation increased the levels of these proteins and induced drug resistance in the parental drug-sensitive CEM cells. These results suggest that the chemoresistance-related proteins are differentially modulated in drug-sensitive and MDR cells by fractionated irradiation, and the optimized treatment with fractionated radiation could lead to new chemoradiotherapeutic strategies to treat multidrug-resistant tumors.  相似文献   

12.
13.
Postirradiation tumor volume response, cellular repopulation dynamics, cell-cycle perturbations, and phase-specific cell survival were characterized in rat rhabdomyosarcoma R-1 tumors (the R2C5 subline) following an in situ 10-Gy dose of 225-kVp X rays. This X-ray dose produced a 7.5-day delay in tumor growth to twice the volume measured at the time of irradiation, and reduced the initial surviving fraction of R2C5 cells to 0.17 as measured by the excision assay procedure. The surviving fraction of R2C5 cells returned to unity by the 16th day after tumor irradiation. On the basis of flow cytometry measurements of DNA content in tumor cells stained with a noncytotoxic concentration of Hoechst 33342 (5 microM, 2 h, 37 degrees C), a transient G2 block was observed 1 day after irradiation. Flow cytometry measurements also demonstrated that the tetraploid R2C5 cells constituted only 30% of the total tumor cell population, with the remainder being diploid host cells comprised of macrophages, monocytes, lymphocytes, and granulocytes. Large numbers of host cells infiltrated the irradiated tumors, leading to an increase in the percentage of diploid cells by Day 2 and reaching a level of more than 80% of the total tumor cell population by 4 to 8 days after irradiation. The influx of host cells into irradiated tumors was correlated temporally with a significant 12-fold decrease in the surviving fraction of R2C5 cells that occurred between Days 2 and 4 postirradiation. When the diploid host cell population was removed by cell sorting procedures, the surviving fraction of R2C5 cells at Day 4 was substantially greater than that in the presence of the host cells. Experiments involving the mixing of 4/1 and 12/1 ratios of diploid host cells and tetraploid tumor cells isolated from irradiated and unirradiated tumors demonstrated that the cytotoxic effect of the host cells was specific for the irradiated tumor cells. The significant toxic effect of host cells on irradiated tumor cells was observed only at 2 to 4 days after irradiation, and not at earlier or later times. The data obtained in these experiments indicate that the immunogenicity of R2C5 cells is increased significantly by irradiation, and a resultant cell-mediated host immune response produced a delayed decrease in tumor cell survival that is most pronounced 4 days after irradiation. The cell survival characteristics of R2C5 cells in different cell-cycle phases were found to be similar through the 16-day postirradiation interval that was studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Radiotherapy is an important treatment modality for oral cancer. However, development of radioresistance is a major hurdle in the efficacy of radiotherapy in oral cancer patients. Identifying predictors of radioresistance is a challenging task and has met with little success. The aim of the present study was to explore the differential spectral profiles of the established radioresistant sublines and parental oral cancer cell lines by Raman spectroscopy. We have established radioresistant sublines namely, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B from its parental UPCI:SCC029B cell line, by using clinically admissible 2Gy fractionated ionizing radiation (FIR). The developed radioresistant character was validated by clonogenic cell survival assay and known radioresistance-related protein markers like Mcl-1, Bcl-2, Cox-2 and Survivin. Altered cellular morphology with significant increase (p<0.001) in the number of filopodia in radioresistant cells with respect to parental cells was observed. The Raman spectra of parental UPCI:SCC029B, 50Gy-UPCI:SCC029B and 70Gy-UPCI:SCC029B cells were acquired and spectral features indicate possible differences in biomolecules like proteins, lipids and nucleic acids. Principal component analysis (PCA) provided three clusters corresponding to radioresistant 50Gy, 70Gy-UPCI:SCC029B sublines and parental UPCI:SCC029B cell line with minor overlap, which suggest altered molecular profile acquired by the radioresistant cells due to multiple doses of irradiation. The findings of this study support the potential of Raman spectroscopy in prediction of radioresistance and possibly contribute to better prognosis of oral cancer.  相似文献   

15.
Radiotherapy (RT) is a major modality of cancer treatment. However, tumors often acquire radioresistance, which causes RT to fail. The exact mechanisms by which tumor cells subjected to fractionated irradiation (FIR) develop an adaptive radioresistance are largely unknown. Using the radioresistant KYSE-150R esophageal squamous cell carcinoma (ESCC) model, which was derived from KYSE-150 parental cells using FIR, the role of Bmi-1 in mediating the radioadaptive response of ESCC cells to RT was investigated. The results showed that the level of Bmi-1 expression was significantly higher in KYSE-150R cells than in the KYSE-150 parental cells. Bmi-1 depletion sensitized the KYSE-150R cells to RT mainly through the induction of apoptosis, partly through the induction of senescence. A clonogenic cell survival assay showed that Bmi-1 depletion significantly decreased the radiation survival fraction in KYSE-150R cells. Furthermore, Bmi-1 depletion increased the generation of reactive oxygen species (ROS) and the expression of oxidase genes (Lpo, Noxo1 and Alox15) in KYSE-150R cells exposed to irradiation. DNA repair capacities assessed by γ-H2AX foci formation were also impaired in the Bmi-1 down-regulated KYSE-150R cells. These results suggest that Bmi-1 plays an important role in tumor radioadaptive resistance under FIR and may be a potent molecular target for enhancing the efficacy of fractionated RT.  相似文献   

16.
In the present work, PAC1-R (G-protein-coupled receptor specific for PACAP) was detected on cells in the normal thymus. Immunohistochemically PAC1-R was expressed strongly in stromal cells of the thymic medulla. Positive cells were also observed in the thymus of fetal and old adult rats. After 8 Gy irradiation to 9-week-old rats, PAC1-R expressions in the thymus decreased and almost recovered by day 21. The expression of PAC1-R mRNA was weak in the thymus and decreased further after irradiation. The expression almost recovered by day 28. Hip and hip/hop variants, which were not expressed in the normal thymus, were expressed in the thymus on days 3, 5 and 21 after irradiation. The expressions of IL-6 and IL-10 tended to increase initially after irradiation then decreased. Histologically, the thymic structures were destroyed on day 3 after irradiation and the thymus almost recovered by day 21. Thus PACAP is thought to be one of the important factors for cross-talk between cells involved in thymic regeneration.  相似文献   

17.
These experiments were designed to study the kinetics and magnitude of cell repair and repopulation in tissues whose damage results in the tumor bed effect. The right hind thighs of mice were irradiated with single doses or two equal gamma-ray fractions. Interfraction intervals ranging from 30 min to 24 h (to measure the kinetics of repair from sublethal damage) and 6 and 12 weeks (to determine the extent of repopulation) were used. One day after the second radiation dose 5 X 10(5) FSA tumor cells were inoculated into the center of the irradiated field. Radiation dose-response curves were obtained by calculating the time required for tumors to reach 12 mm diameter. No recovery occurred within 6 h of the radiation delivery as measured by this assay. Some recovery, 3.2-4.6 Gy above a single radiation dose, occurred when the interval between two fractions was 24 h. With increasing interfraction intervals of 6 and 12 weeks further dose sparing occurred in the amount of 5.0-6.9 and 7.5-8.3 Gy, respectively. The data suggest that repopulation is the major contributor to the radiation dose-sparing recovery of stromal tissue and that some proliferative response may occur as early as 1 day after the first irradiation.  相似文献   

18.
Response of a solid tumor to radiation treatment depends, in part, on the intrinsic radiosensitivity of tumor cells, the proliferation rate of tumor cells between radiation treatments and the hypoxic state of the tumor cells. A successful radiosensitizing agent would target S-phase cells and hypoxia. Recently, we demonstrated the anti-tumor effects of flavopiridol in the GL261 murine glioma model might involve 1) recruitment of tumor cells to S-phase (Newcomb et al., Cell Cycle 2004; 3:230-234) and 2) an anti-angiogenic effect on the tumor vasculature by downregulation of hypoxia-inducible factor -1? (HIF-1?) (Newcomb et al., Neuro-Oncology 2005; 7:225-235). Given that flavopiridol has demonstrated radiosensitizing activity in several murine tumor models, we tested whether it would enhance the response of GL261 tumors to radiation. In the present study, we evaluated the intrinsic radiation sensitivity of the GL261 glioma model using the tumor control/cure dose of radiation assay (TCD50). We found that a single dose of 65 Gy (CI 57.1-73.1) was required to cure 50% of the tumors locally. Using the tumor growth delay assay, fractionated radiation (5 fractions of 5 Gy over 10 days) combined with flavopiridol (5 mg/kg) given three times weekly for 3 cycles produced a significant growth delay. Our results indicate that the GL261 murine glioma model mimics the radioresistance encountered in human gliomas, and thus should prove useful in identifying promising new investigational radiosensitizers for use in the treatment of glioma patients.  相似文献   

19.
To investigate the effect of fractionated whole-brain irradiation on nonhuman primates, 6-9-year-old male rhesus monkeys were irradiated with 40 Gy delivered as two 5-Gy fractions/week for 4 weeks. Cognitive function was assessed 5 days/week for 4 months prior to fractionated whole-brain irradiation and for 11 months after irradiation using a Delayed-Match-to-Sample (DMS) task at both low and high cognitive loads. Local rates of cerebral glucose metabolism were measured prior to and 9 months after irradiation using [(18)F]-2-deoxy-2-fluoro-d-glucose positron emission tomography. Low cognitive load trials did not reveal a significant reduction in performance until 7 months after irradiation; performance then declined progressively. In high cognitive load trials, the initial impairment was observed ~1 month after irradiation. This was followed by a transient recovery period over the next 1-2 months, after which performance declined progressively through 11 months after irradiation. Nine months after irradiation, glucose uptake during the DMS task was decreased in the cuneate and prefrontal cortex and was increased in the cerebellum and thalamus compared with the levels prior to irradiation. Results from this pilot study suggest that the radiation-induced changes in cognition and brain metabolism observed in rhesus monkeys may be similar to those observed in brain tumor patients receiving brain irradiation.  相似文献   

20.
It has been shown that the malonic dialdehyde (MDA) content in spleen lymphocytes of rats increases after whole-body X irradiation with a dose of 0.5 Gy to reach the maximum level in 24 h. Simultaneously, the concentration of cGMP and free cytosol Ca2+ increases. With a dose of 1 Gy MDA content of cells increases 6 h following irradiation. The maximum drop of the release of viable lymphocytes from the spleen and thymus, observed 24 h and 3 days after irradiation respectively, coincides with the appearance of the second peak of the MDA content. The level of cGMP remains decreased throughout the period of about 6 days. The onset of lymphocyte repopulation in the spleen on day 6 coincides with the decrease in the MDA level and increase in the cytosol Ca2+ concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号