首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The female gametophyte is crucial for sexual reproduction of higher plants, yet little is known about the molecular mechanisms underlying its development. Here,we report that Arabidopsis thaliana NOP10(AtNOP10) is required for female gametophyte formation. AtNOP10 was expressed predominantly in the seedling and reproductive tissues, including anthers, pollen grains, and ovules.Mutations in AtNOP10 interrupted mitosis of the functional megaspore during early development and prevented polar nuclear fusion in the embryo sacs. AtNOP10 shares a high level of amino acid sequence similarity with Saccharomyces cerevisiae(yeast) NOP10(ScNOP10), an important component of the H/ACA small nucleolar ribonucleoprotein particles(H/ACA sno RNPs) implicated in 18 S r RNA synthesis and r RNA pseudouridylation. Heterologous expression of ScNOP10 complemented the mutant phenotype of Atnop10. Thus, AtNOP10 influences functional megaspore mitosis and polar nuclear fusion during gametophyte formation in Arabidopsis.  相似文献   

2.
In a previous study we found that sumoylation of the DNA-binding protein heat shock factor 2 (HSF2) is up-regulated during mitosis, but the mechanism that mediates this regulation was unknown. Here we show that HSF2 interacts with the polycomb protein MEL-18, that this interaction decreases during mitosis, and that overexpression and RNA interference-mediated reduction of MEL-18 result in decreased and increased HSF2 sumoylation, respectively. Other results suggest that MEL-18 may also function to inhibit the sumoylation of other cellular proteins. The results also show that MEL-18 is able to interact with the small ubiquitin-like modifier (SUMO) ubiquitin carrier protein (E2) enzyme UBC9 and that MEL-18 inhibits the ability of UBC9 to transfer the SUMO protein to target proteins. Together, the results in this work suggest a mechanism in which MEL-18 bound to HSF2 inhibits its sumoylation by binding to and inhibiting the activity of UBC9 enzymes in the vicinity of HSF2. These results provide an explanation for how mitotic HSF2 sumoylation is regulated and suggest that MEL-18, in contrast to the sumoylation-stimulating activities of the polycomb protein PC2, actually functions like an anti-SUMO ubiquitin-protein isopeptide ligase (E3), interacting both with HSF2 and the SUMO E2 UBC9 but acting to inhibit UBC9 activity to decrease sumoylation of a target protein, in this case that of HSF2.  相似文献   

3.
Summary Using an antibody against tyrosinated tubulin and epifluorescence microscopy, mitosis was studied in three different microvessel endothelial cell types recently isolated from bovine corpus luteum. Dividing cells were flat and at certain stages individual microtubules could be followed for considerable lengths. The structure of the spindle apparatus and the course of mitosis were conventional. Microtubule asters were small from prophase until metaphase in all three cell types. However, whereas in two cell types telophase asters remained inconspicuous, prominent asters, of mostly straight microtubules, formed in telophase cells of a third cell type. Thus, aster size is heterogeneous between different endothelial cell types. Large microtubule asters are not regularly found in dividing cultured mammalian cells. The microendothelial cell types present themselves as appropriate systems for spindle research and especially for the study of aster microtubule dynamics and function.  相似文献   

4.
zVAD-fmk and DEVD-cho induced late mitosis arrest and apoptotic expressions   总被引:2,自引:0,他引:2  
Cell growth in human Chang liver cells was arrested in late mitosis with 600 M zVAD-fmk. Associated cell death manifested cell shrinkage and phagocytic marking shown by phosphatidylserine (PS) externalization, in a dose-dependent manner. While low molecular weight internucleosomal ladder cleavages were suppressed, there were however high molecular weight DNA cleavages extending up to megabase level in association with chromatin condensation that appeared more marked than the staurosporine-induced positive-apoptosis control. Caspase-3 activity was suppressed. Specific caspase-3 inhibitor DEVD-cho also produced cell growth suppression with late mitosis arrest, and cell shrinkage which was expressed concomitantly with phagocytic PS marking in similar dose-dependent manners at 50 to 100 M concentrations. Cell shrinkage, PS externalization, and high molecular weight DNA cleavages associated with chromatin condensation without 200 bp ladder fragmentations, were dissociated from caspase-3 activity. Anticaspases inducing late mitosis arrest provided fresh insights into late mitosis progression.  相似文献   

5.
6.
It was recently demonstrated that growth in cell size can be dissociated from DNA synthesis and mitosis. 3T3 cells starved to quiescence in low serum concentration can be stimulated to undergo DNA synthesis and one cell division without growing in size (unbalanced growth) (42-44). We report here that in cells stimulated to undergo unbalanced growth, the cell nucleus undergoes balanced growth, i.e., nearly doubles in size prior to mitosis. The reduced ability to grow in cell size under unbalanced growth conditions is thus mainly ascribable to the cytoplasm. Furthermore, the extent to which cells grow in size prior to mitosis is dependent on the serum concentration in the tissue culture medium (44). This data suggests that some macromolecular factor or factors in serum are required for growth in cell size prior to mitosis. We report in this study that epidermal growth factor (EGF) alone exerts a small but significant stimulatory influence on DNA synthesis and mitosis but does not affect cellular enlargement. In contrast, insulin added at supraphysiological concentrations does not stimulate quiescent cells to enter S phase but instead stimulates growth in cell size in the small fraction of dividing cells. Furthermore, cells stimulated to proliferate by EGF could be induced to undergo balanced growth when insulin was added concomitantly. Finally, platelet-derived growth factor (PDGF) stimulates quiescent sparse 3T3 cells to undergo DNA synthesis and mitosis. PDGF also exerts a limited but significant effect on cellular enlargement. However, PDGF alone could not induce a complete balanced growth, i.e., a doubling in cell size prior to mitosis.  相似文献   

7.
Mitotic centromere-associated kinesin (MCAK) plays an essential role in spindle formation and in correction of improper microtubule-kinetochore attachments. The localization and activity of MCAK at the centromere/kinetochore are controlled by Aurora B kinase. However, MCAK is also abundant in the cytosol and at centrosomes during mitosis, and its regulatory mechanism at these sites is unknown. We show here that cyclin-dependent kinase 1 (Cdk1) phosphorylates T537 in the core domain of MCAK and attenuates its microtubule-destabilizing activity in vitro and in vivo. Phosphorylation of MCAK by Cdk1 promotes the release of MCAK from centrosomes and is required for proper spindle formation. Interfering with the regulation of MCAK by Cdk1 causes dramatic defects in spindle formation and in chromosome positioning. This is the first study demonstrating that Cdk1 regulates the localization and activity of MCAK in mitosis by directly phosphorylating the catalytic core domain of MCAK.Chromosomes are properly attached to the mitotic spindles, and chromosome movement is tightly linked to the structure and dynamics of spindle microtubules during mitosis. Important regulators of microtubule dynamics are the kinesin-13 proteins (37). This kinesin superfamily is defined by the localization of the conserved kinesin core motor domain in the middle of the polypeptide (19). Kinesin-13 proteins induce microtubule depolymerization by disassembling tubulin subunits from the polymer end (6). Among them, mitotic centromere-associated kinesin (MCAK) is the best-characterized member of the family. It depolymerizes microtubules in vitro and in vivo, regulates microtubule dynamics, and has been implicated in correcting misaligned chromosomes (12, 14, 16, 24). In agreement with these observations, both overexpression and inhibition of MCAK result in a disruption of microtubule dynamics, leading further to improper spindle assembly and errors in chromosome alignment and segregation (7, 11, 15, 22, 33). The importance of MCAK in ensuring the faithful segregation of chromosomes is consistent with the observation that MCAK is highly expressed in several types of cancer and thus is likely to be involved in causing aneuploidy (25, 32).While MCAK is found both in the cytoplasm and at the centromeres throughout the cell cycle, it is highly enriched on centrosomes, the centromeres/kinetochores, and the spindle midzone during mitosis (18, 21, 36, 38). In accordance with its localizations, MCAK affects many aspects throughout mitosis, from spindle assembly and maintenance (3, 10, 36) to chromosome positioning and segregation (14, 21, 35). Thus, the precise control of the localization and activity of MCAK is crucial for maintaining genetic integrity during mitosis. Regulation of MCAK on the centromeres/kinetochores by Aurora B kinase in mitosis has been intensively investigated (1, 28, 29, 43). The data reveal that MCAK is phosphorylated on several serine/threonine residues by Aurora B, which inhibits the microtubule-destabilizing activity of MCAK and regulates its localization on chromosome arms/centromeres/kinetochores during mitosis (1, 18, 28). Moreover, in concert with Aurora B, ICIS (inner centromere KinI stimulator), a protein targeting the inner centromeres in an MCAK-dependent manner, may regulate MCAK at the inner centromeres and prevent kinetochore-microtubule attachment errors in mitosis by stimulating the activity of MCAK (27). Interestingly, hSgo2, a recently discovered inner centromere protein essential for centromere cohesion, has been reported to be important in localizing MCAK to the centromere and in spatially regulating its mitotic activity (13). These data highlight that the activity and localization of MCAK on the centromeres/kinetochores during mitosis are tightly controlled by Aurora B and its cofactors. Remarkably, MCAK concentrates at spindle poles from prophase to telophase during mitosis (18); however, only a few studies have been done to deal with that issue. Aurora A-depleted prometaphase cells delocalize MCAK from spindle poles but accumulate the microtubule-stabilizing protein ch-TOG at poles (5), implying that Aurora A might influence the centrosomal localization of MCAK in mitosis. Aurora A is also found to be important for focusing microtubules at aster centers and for facilitating the transition from asters to bipolar spindles in Xenopus egg extracts (42). In addition, it has been revealed that Ca2+/calmodulin-dependent protein kinase II gamma (CaMKII gamma) suppresses MCAK''s activity, which is essential for bipolar spindle formation in mitosis (11). More work is required to gain insight into the regulatory mechanisms of MCAK at spindle poles during mitosis.Deregulated cyclin-dependent kinases (Cdks) are very often linked to genomic and chromosomal instability (20). Cyclin B1, the regulatory subunit of Cdk1, is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment (2, 4). We observed that knockdown of cyclin B1 induces defects in chromosome alignment and mitotic spindle formation (N.-N. Kreis, M. Sanhaji, A. Krämer, K. Sommor, F. Rödel, K. Strebhardt, and J. Yuan, submitted for publication). Yet, how Cdk1/cyclin B1 carries out these functions is not very well understood. In this context, it is extremely interesting to investigate the relationship between the essential mitotic kinase Cdk1 and the microtubule depolymerase MCAK in human cells.  相似文献   

8.
Laboratory studies on the normally fissiparous Dugesia biblica from Israel (3 n =27+ x supernumeraries) have been made in order to investigate fission rates and spontaneous maturation of four fissioning populations and one clone. Laboratory induced maturation in a sixth population of D. biblica resulted in the laying of fertile cocoons, the offspring of which were either 3 n =27+ x , 2 n = 18+ x or 2 n = 18+ x It is suggested that triploidy is primarily responsible for the lack of sexual reproduction in the field, and that unequal inheritance of supernumerary chromosomes during mitosis may explain the differing tendencies to undergo spontaneous maturation by individuals of a clone of D. biblica. The karyotype, habitat and reproduction of D. biblica is compared with a closely related but diploid, normally sexually reproducing Dugesia form and possible relationships between these two are discussed.  相似文献   

9.
The mTOR signaling complex integrates signals from growth factors and nutrient availability to control cell growth and proliferation, in part through effects on the protein-synthetic machinery. Protein synthesis rates fluctuate throughout the cell cycle but diminish significantly during the G2/M transition. The fate of the mTOR complex and its role in coordinating cell growth and proliferation signals with protein synthesis during mitosis remain unknown. Here we demonstrate that the mTOR complex 1 (mTORC1) pathway, which stimulates protein synthesis, is actually hyperactive during mitosis despite decreased protein synthesis and reduced activity of mTORC1 upstream activators. We describe previously unknown G2/M-specific phosphorylation of a component of mTORC1, the protein raptor, and demonstrate that mitotic raptor phosphorylation alters mTORC1 function during mitosis. Phosphopeptide mapping and mutational analysis demonstrate that mitotic phosphorylation of raptor facilitates cell cycle transit through G2/M. Phosphorylation-deficient mutants of raptor cause cells to delay in G2/M, whereas depletion of raptor causes cells to accumulate in G1. We identify cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways as two probable mitosis-regulated protein kinase pathways involved in mitosis-specific raptor phosphorylation and altered mTORC1 activity. In addition, mitotic raptor promotes translation by internal ribosome entry sites (IRES) on mRNA during mitosis and is demonstrated to be associated with rapamycin resistance. These data suggest that this pathway may play a role in increased IRES-dependent mRNA translation during mitosis and in rapamycin insensitivity.Cell growth and cell division are tightly coordinated processes required for cells to remain equal in size after division. In unicellular organisms, cell growth and proliferation are coordinated by nutrient availability, whereas their multicellular counterparts must also respond to growth factor input. Both processes lead to organismal growth as well as to increased cell number and cell mass. Cell growth and cell proliferation are also linked via the mTOR signaling pathway (16, 17). The mTOR kinase forms a distinct signaling complex (mTORC1) that participates in the coordination of nutrient and growth factor signaling. mTORC1 is composed of the kinase mTOR, the adaptor protein raptor, and the regulatory protein LST8 (25, 33, 34, 72).Accumulation of cellular proteins leads to cell growth and cell division. However, cell growth occurs only during certain phases of the cell cycle, necessitating that protein synthesis rates oscillate during cell cycling (40). In addition, in quiescent cells in G0, protein synthesis rates are significantly reduced, whereas a select group of mRNAs maintain active translation (20, 68). During the G1 phase, overall protein synthesis rates increase through S phase to allow cells to grow and enter another round of cell division while maintaining cell size (2, 3, 42, 45). As with G0, entrance into mitosis (G2/M phase) results in a global downregulation by as much as 60 to 80% of cap-dependent mRNA translation in primary, immortalized, and some transformed cells (5, 14, 29).Studies report several possible mechanisms for inhibition of protein synthesis during mitosis. Translation initiation requires the formation of an initiation factor complex known as eukaryotic translation initiation factor 4F (eIF4F), which consists of cap binding protein eIF4E, molecular scaffold protein eIF4G, and RNA helicase eIF4A. Together, they recruit ribosomes to mRNAs via bridging interactions between the 7-methyl-GTP (m7GTP) 5′ cap and the small 40S ribosomal subunit. Downregulation of protein synthesis during G2/M was first ascribed to hypophosphorylation of eIF4E and the eIF4E binding proteins (4E-BPs) (5, 46). 4E-BPs are activated by hypophosphorylation, which allows them to bind and sequester eIF4E, preventing it from binding eIF4G and thereby blocking cap-dependent mRNA translation. More recently, several studies suggest that 4E-BP1, the major 4E-BP and a key target of mTORC1, is actually hyperphosphorylated (inactivated) during mitosis (26, 49). It is puzzling, then, that the phosphatidylinositol 3-kinase (PI3K)/AKT network and AKT itself (which modulate mTORC1 activity) are reportedly inactivated during late mitosis (1, 9, 22). In addition, phosphorylation of another mTORC1 target, ribosomal S6 kinase 1 (S6K1), and its activity are actually highest during G2/M phase, consistent with elevated mTORC1 activity during mitosis (6).In this study we show that, despite repression of AKT and other activators of mTORC1 activity in mitosis, mTORC1 remains active and phosphorylates 4E-BP1 and S6K1 during G2/M. We describe the multisite phosphorylation of raptor during mitosis, and we identify seven mitosis-specific raptor phosphorylation sites. By developing phosphomimetic and phosphorylation-deficient mutants of raptor, we show that hyperphosphorylated raptor promotes cell cycle transit through G2/M, whereas hypophosphorylated raptor promotes transit through G1. Raptor phosphorylation is shown to involve kinase pathways that are known to be active during mitosis, including cyclin-dependent kinase 1 (cdk1 [cdc2]) and glycogen synthase kinase 3 (GSK3) pathways that are also upregulated in certain human cancers, including breast cancers. These and other findings disclose a novel regulatory network for mTORC1 that is active during mitosis, important for G2/M progression and increased internal ribosome entry site (IRES)-dependent translation during mitosis, and indirectly associated with rapamycin resistance.  相似文献   

10.
There is an evidence that mitotic activity of human cardiomyocytes in late fetal and early postnatal ontogenesis is very low. But little is known of the division of human cardiomyocytes at earlier stages of development. In this study mitotic activity of ventricular and atrial human cardiomyocytes of 4-8-week-old embryos and 17-32-week-old fetuses has been studied. On these stages the mitotic index is relatively low to reduce moderately within the 1st to the 3rd trimester of pregnancy from 1.4 to 0.7%. These findings are consistent with the data on cell ploidy demonstrating the presence of relatively small share of myocytes with 3c and 4c DNA in ventricles of 6-8-week-old embryos and 12-22-week-old fetuses. The share of such cells in the 1st and 2nd trimesters of pregnancy varies from 19 to 24% and from 8 to 18%, respectively. Cells with 3c and 4c DNA are most likely to be in mitotic cycle. This assumption is supported by electron microscope pictures showing all phases of typical mitosis. Cyclic changes of myofibrillar ultrastructure during mitosis of prenatal human cardiomyocytes are the same as during mitosis of low differentiated myocytes in mouse and rat hearts. These results suggest that in prenatal human cardiomyogenesis the level of myocyte differentiation and the cell number increase at slow rate.  相似文献   

11.
Summary The spatial relationships in human male metaphase cells treated with and without colcemide were compared with each other. The following results were obtained: (1) In normal male metaphases the overall distributions of chromosomal distances regardless of chromosome identification numbers did not show normal distribution, neither in the colcemid-free sample nor in the colcemide-treated sample. (2) In both samples larger chromosomes showed a more peripheral position, and smaller chromosomes showed a more central position. This finding was statistically significant. (3) No differences between the two samples could be observed concerning the following parameters: overall distributions of the centromere-centromere distances, distributions of the distances between the homologous chromosomes (except the small acrocentric chromosomes), rank positions of the mean distances between homologous chromosomes, and rank positions of the mean distances of the different chromosomes from the center of the mitosis (except few chromosomes). (4) Visible, but not statistically accessible, differences appeared between the two samples in respect to rank positions of the mean distances of all possible acrocentric pairing groups, rank positions of the mean distances of the homologous acrocentric chromosomes from the center of the mitosis, and distances of the X chromosome from the center of the mitosis. (5) Statistically significant differences appeared between the two samples with respect to distance distributions of the small acrocentric chromosomes and positions of the chromosomes 1, 16, 18, Y, and 21, 22 in relation to the center of the mitosis.  相似文献   

12.
Formation of the oral vestibule is ignored in most studies on tooth development, although dental and vestibular lamina are closely related to each other. Knowledge about morphogenetic processes shaping the oral vestibule is missing almost completely. The aim of this study was to assess the developmental relationship between dental and vestibular lamina as well as formation of the oral vestibule in the upper jaw of the field vole (Microtus agrestis), a small rodent representing an attractive model species for comparative dental studies. Three-dimensional reconstruction revealed that the upper vestibular lamina of the vole joins the antemolar part of the diastemal dental lamina, similar to mouse. Later, this lamina complex regresses and the vestibular lamina is separated from the molar epithelium. Participation of the vestibular lamina in dental lamina formation, as hypothesized for mouse, therefore remains unclear. Except for increased apoptosis in the regressing diastemal dental lamina, spatial segregation of mitoses or apoptoses could be detected neither in the jaw arch epithelium nor in the adjacent mesenchyme. Therefore, in contrast to tooth primordia, apoptosis and mitosis seem to play a minor role in shaping of the upper oral vestibule. The buccal vestibule develops secondarily, probably in consequence of general growth of the head and localized differentiation of cells.  相似文献   

13.
The ring chromosome is a circular, structural abnormality composed of either multiple chromosomes or a single chromosome with loss of genetic material at one or both ends. This chromosomal rearrangement is often unstable with frequent recombinations and may be accompanied by either loss or amplification of genetic material[1]. Considering that ring chromosomes are rare in acute myelogenous leukemia (AML), it is difficult to risk stratify patient prognosis, particularly when the ring chromosome occurs as the sole abnormality. Here we report a case of a ring chromosome 18 abnormality in a patient with newly diagnosed AML with monocytic differentiation. Cytogenetic analysis demonstrated 46, XY, r(18)(p11q21) karyotype in 19 of 34 evaluated metaphase cells. The patient received induction chemotherapy and subsequent allogeneic cord blood transplant from a sex-matched donor, and remained in hematologic and cytogenetic remission for 120 days post transplant. Soon after, he developed post transplant lymphoproliferative disorder and died of multi-organ failure. Although r(18) chromosomal abnormalities were not classified in the recent updated evidence-and expert opinion-based recommendations for the diagnosis and management of AML (likely due to the small number of reported cases), the patient was treated as high risk with stem cell transplantation. This was based on the unstable nature of the ring chromosome and the poor outcomes described in the literature of patients with sole ring 18 abnormalities.  相似文献   

14.
Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.  相似文献   

15.
DNA double-strand breaks (DSBs) are extremely cytotoxic with a single unrepaired DSB being sufficient to induce cell death. A complex signalling cascade, termed the DNA damage response (DDR), is in place to deal with such DNA lesions and maintain genome stability. Recent work by us and others has found that the signalling cascade activated by DSBs in mitosis is truncated, displaying apical, but not downstream, components of the DDR. The E3 Ubiquitin ligases RNF8, RNF168 and BRCA1, along with the DDR mediator 53BP1, are not recruited to DSB sites in mitosis, and activation of downstream checkpoint kinases is also impaired. Here, we show that RNF8 and RNF168 are recruited to DNA damage foci in late mitosis, presumably to prime sites for 53BP1 recruitment in early G1. Interestingly, we show that, although RNF8, RNF168 and 53BP1 are excluded from DSB sites during most of mitosis, they associate with mitotic structures such as the kinetochore, suggesting roles for these DDR factors during mitotic cell division. We discuss these and other recent findings and suggest how these novel data collectively contribute to our understanding of mitosis and how cells deal with DNA damage during this crucial cell cycle stage.  相似文献   

16.
From 31 children with acute lymphoblastic leukaemia the mitosis index in the bone-marrow was determined before the onset of therapy and during the clinical progress. Initially, the mean white mitosis index lay with 3.4% below that of the normal test persons, it rose significantly in the hematologic full remission and showed a decreasing tendency with a great range of dispersion in the recidive. The most lowered mitosis index was found in the final stage. Strong shifts in the kariologic distributions make a remaining in the prophase of the mitosis evident. The influence of polychemotherapy on the mitosis index and the phases of mitosis is discussed. Correlations between the mitosis index and clinical as well as paraclinical parameters were only to be found with respect to granulocytes and lymphoblasts. The considerable ranges of fluctuations of the mitosis index and the lack of congruity with the clinical progress of ALL allow no ensured assertions to be made for the single patient. It seems to be important in eosinophilia and in leukaemoid reactions.  相似文献   

17.
BACKGROUND: The accurate alignment of chromosomes at the spindle equator is fundamental for the equal distribution of the genome in mitosis and thus for the genetic integrity of eukaryotes. Although it is well established that chromosome movements are coupled to microtubule dynamics, the underlying mechanism is not well understood. RESULTS: By combining RNAi-depletion experiments with in vitro biochemical assays, we demonstrate that the human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression in mammalian tissue culture cells. We show that in vitro Kif18A is a slow plus-end-directed kinesin that possesses microtubule depolymerizing activity. Notably, Kif18A like its yeast ortholog Kip3p depolymerizes longer microtubules more quickly than shorter ones. In vivo, Kif18A accumulates in mitosis where it localizes close to the plus ends of kinetochore microtubules. The depletion of Kif18A induces aberrantly long mitotic spindles and loss of tension across sister kinetochores, resulting in the activation of the Mad2-dependent spindle-assembly checkpoint. Live-cell microscopy studies revealed that in Kif18A-depleted cells, chromosomes move at reduced speed and completely fail to align at the spindle equator. CONCLUSIONS: These studies identify Kif18A as a dual-functional kinesin and a key component of chromosome congression in mammalian cells.  相似文献   

18.
The mushroom toxin α-amanitin is known to possess a high affinity to eukaryotic RNA polymerase II (or B) [1–3]. To pursue the question where these enzymes are located during mitosis of cells, a fluorescent derivative of α-amanitin (FAMA) was prepared. The affinity of FAMA to RNA polymerase II is 18 times lower than that of α-amanitin which is, however, sufficient for bright staining of nuclei of interphase rat kangaroo (PtK1) cells. During mitosis a large part of the fluorescent stain was distributed over the cytoplasm, while the chromosomes were never found to be stained. An accumulation of the fluorescent toxin during metaphase was observed in the spindle, particularly in the centrioles. Fluorescence of the centrioles persists also during anaphase. It is concluded that during mitosis of PtK1 cells the RNA polymerase II is distributed in the cytoplasm rather than bound to chromosomes. The accumulation of fluorescent toxin in the spindle and centrioles may speculatively be explained by the presence of another protein with high affinity to amatoxins, which has recently been isolated from calf thymus by Brodner & Wieland [4].  相似文献   

19.
The effects of glucose and of a pectic substrate in the duplication cycle, spore polarization and septation of Aspergillus nidulans were tested in poor and rich media. Growth on poor conditions and on sodium polypectate slowed nuclear duplication and reduced the coupling of polarization to mitosis. Coupling of septation to the third mitosis was also reduced by changing growth conditions. When protein kinase A (PKA) and protein kinase C (PKC) activators were added to the media the results suggested a role for PKA in slowing the duplication cycle, while allowing polarization. Addition of a PKC activator to poor media uncoupled the first septum formation from the third mitosis in a carbon source-regulated manner, suggesting a role for PKC in coordinating cell cycle signals, growth and cytokinesis.  相似文献   

20.
Early embryonic mitosis of the silkworm, Bombyx mori, was morphologically studied in the normal eggs and in the eggs treated by low temperature (?10°C). The first embryonic mitosis is observed in the eggs at 120 to 150 minutes after deposition at 26°C. After egg and sperm pronuclei unite, a spindle is formed in each of the pronuclei independently. At metaphase and anaphase paternal and maternal chromosomes are in separate groups on a spindle (gonomeric) and karyogamy takes place at telophase when they reach the poles. The second embryonic mitosis is shown in the eggs at 180 to 210 minutes after deposition. The division of two nuclei is not synchronous in the silkworm, and the mitosis is not gonomeric. In the eggs treated by low temperature, spindle fibers are not observed at all at ?10°C, and chromosomes, which form two deeply stained masses of irregular shape, are seen in the less stained area of spindle shape. When the eggs are returned to 26°C, some eggs go into normal gonomeric division, while some form two small and compact spindles, which seem to be derived from each of the pronuclei. It was observed that these compact spindles are able to continue mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号