首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural-abundance C nuclear magnetic resonance (C-NMR) revealed the production of erythritol and glycerol by nongrowing cells of Leuconostoc oenos metabolizing glucose. The ratio of erythritol to glycerol was strongly influenced by the aeration conditions of the medium. The elucidation of the metabolic pathway responsible for erythritol production was achieved by C-NMR and H-NMR spectroscopy using specifically C-labelled d-glucose. The H-NMR spectrum of the cell supernatant resulting from the metabolism of [2-C]glucose showed that only 75% of the glucose supplied was metabolized heterofermentatively and that the remaining 25% was channelled to the production of erythritol. The synthesis of this polyol resulted from the reduction of the C-4 moiety of the intermediate fructose 6-phosphate. Oxygen has an inhibitory effect on the production of erythritol by L. oenos. Preaeration of a suspension of nongrowing cells of L. oenos resulted in 30% less erythritol and in 70% more glycerol formed during the anaerobic metabolism of glucose. The anaerobic production of erythritol from glucose was also found in growing cultures of L. oenos, although to a smaller extent.  相似文献   

2.
C nuclear magnetic resonance (C-NMR) was used to investigate the metabolism of citrate plus glucose and pyruvate plus glucose by nongrowing cells of Lactococcus lactis subsp. lactis 19B under anaerobic conditions. The metabolism of citrate plus glucose during growth was also monitored directly by in vivo NMR. Although pyruvate is a common intermediate metabolite in the metabolic pathways of both citrate and glucose, the origin of the carbon atoms in the fermentation products was determined by using selectively labeled substrates, e.g., [2,4-C]citrate, [3-C]pyruvate, and [2-C]glucose. The presence of an additional substrate caused a considerable stimulation in the rates of substrate utilization, and the pattern of end products was changed. Acetate plus acetoin and butanediol represented more than 80% (molar basis) of the end products of the metabolism of citrate (or pyruvate) alone, but when glucose was also added, 80% of the citrate (or pyruvate) was converted to lactate. This result can be explained by the activation of lactate dehydrogenase by fructose 1,6-bisphosphate, an intermediate in glucose metabolism. The effect of different concentrations of glucose on the metabolism of citrate by dilute cell suspensions was also probed by using analytical methods other than NMR. Pyruvate dehydrogenase (but not pyruvate formate-lyase) was active in the conversion of pyruvate to acetyl coenzyme A. alpha-Acetolactate was detected as an intermediate metabolite of citrate or pyruvate metabolism, and the labeling pattern of the end products agrees with the alpha-acetolactate pathway. It was demonstrated that the contribution of the acetyl coenzyme A pathway for the synthesis of diacetyl, should it exist, is lower than 10%. Evidence for the presence of internal carbon reserves in L. lactis is presented.  相似文献   

3.
The metabolic fate of citrate and pyruvate in four strains of Lactococcus lactis subsp. lactis biovar diacetylactis has been studied by means of 13C nuclear magnetic resonance, using as a substrate either [3-13C]pyruvic acid or custom-synthesized citric acid that is 13C labeled either at carbons 2 and 4 or at carbon 3. The fermentations were carried out batchwise in modified M17 broth. For the actual conversions of the 13C-labeled substrates, cells at the end of their logarithmic growth phase were used to minimize the conversion to lactic acid. A mass balance of the main citric acid metabolites was obtained; the four strains produced from 50 to 70% (on a molar basis) lactic acid from either citrate or pyruvate. The remaining 50 to 30% was converted mainly to either α-acetolactic acid (for one strain) or acetoin (for the other three strains). One of the strains produced an exceptionally high concentration of the diacetyl precursor α-acetolactic acid. Another strain (SDC6) also produced α-acetolactic acid, but this was decarboxylated to acetoin at a high rate. The 13C nuclear magnetic resonance method confirmed that the biosynthesis of α-acetolactic acid occurs via condensation of pyruvate and “active” acetaldehyde. Diacetyl was not found as a direct metabolite of citrate or pyruvate metabolism.  相似文献   

4.
Propionate catabolism was monitored in anaerobic cocultures of propionate-degrading and methanogenic bacteria. Metabolism was monitored by use of 13C-enriched propionate and succinate. The intermediates identified indicated that the methylmalonyl coenzyme A pathway was used in these cultures. The data also indicated that a transcarboxylation reaction between succinate and propionyl coenzyme A occurred, yielding propionate and methylmalonyl coenzyme A.  相似文献   

5.
We examined the change of the composition of the cell wall polysaccharides prepared from cells of the salt-tolerant yeast Zygosaccharomyces rouxii grown in two media containing 20% NaCl and 0% NaCl. Comparative analysis of their walls showed that the wall obtained from salt-free medium had greater quantities of alkali-insoluble fraction and smaller quantities of mannan than the walls obtained from 20% NaCl medium. The alkali-insoluble fractions from the cell walls obtained from salt-free medium contained a large amount of glucosamine and a smaller amount of linear β-1,3-glucosidic linkage than the fractions from the cell walls obtained from 20% NaCl medium. Structural analyses showed that the mannans from each cell wall contained an α-1,6-mannbsidic linked backbone to which single mannose and mannobiose units were connected as side chains by α-1,2-mannosidic linkages. However, when cells were grown in the presence of 20% NaCl, the side chains of the mannans consisting of a mannobiose unit were largely reduced.

These results indicated that the structure of alkali-insoluble glucan and mannan were greatly affected by the presence of NaCl in the final medium.  相似文献   

6.
T. L. Miller  X. Chen  B. Yan    S. Bank 《Applied microbiology》1995,61(4):1180-1186
We found that general pathways for amino acid synthesis of Methanosphaera stadtmanae, a methanogen that forms CH(inf4) from H(inf2) and methanol, resembled those of methanogens that form CH(inf4) from CO(inf2) or from the methyl group of acetate. We determined the incorporation of (sup14)C-labeled CO(inf2), formate, methanol, methionine, serine, and acetate into cell macromolecules. Labeling of amino acid carbons was determined by solution nuclear magnetic resonance spectroscopy after growth with (sup13)C-labeled acetate, CO(inf2), serine, and methanol. The (alpha) and (beta) carbons of serine and alanine were formed from carboxyl and methyl carbons of acetate, respectively, and the amino acid carboxyl groups were formed from CO(inf2). This indicates that pyruvate was formed by reductive carboxylation of acetate. Labeling of the methyl carbon of methionine indicated that the major route of synthesis was from the hydroxymethyl carbon of serine that arises from the methyl carbon of acetate. Methanol was a minor source of the methyl of methionine. Unambiguous assignment was made of the sources of all carbons of histidine. Labeling of the histidine 7 position ((epsilon) carbon) was consistent with formation from the C-2 of the purine ring of ATP and the origin of the C-2 from a formyl unit derived from the hydroxymethyl carbon of serine.  相似文献   

7.
We report the use of a model system that examines the dynamics of biological energy availability in organic matter in a sphagnum peat potting mix critical to sustenance of microorganism-mediated biological control of pythium root rot, a soilborne plant disease caused by Pythium ultimum. The concentration of readily degradable carbohydrate in the peat, mostly present as cellulose, was characterized by cross-polarized magic-angle spinning (sup13)C nuclear magnetic resonance spectroscopy. A decrease in the carbohydrate concentration in the mix was observed during the initial 10 weeks after potting as the rate of hydrolysis of fluorescein diacetate declined below a critical threshold level required for biological control of pythium root rot. Throughout this period, total microbial biomass and activity, based on rates of [(sup14)C]acetate incorporation into phospholipids, did not change but shifts in culturable bacterial species composition occurred. Species capable of inducing biocontrol were succeeded by pleomorphic gram-positive genera and putative oligotrophs not or less effective in control. We conclude that sustained efficacy of naturally occurring biocontrol agents was limited by energy availability to this microflora within the organic matter contained in the potting mix. We propose that this critical role of organic matter may be a key factor explaining the variability in efficacy typically encountered in the control of pythium root rot with biocontrol agents.  相似文献   

8.
Two-dimensional 13C-13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of 13C-13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on 1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.  相似文献   

9.
Fourier transform 13C nuclear magnetic resonance spectra have been obtained of intact, fresh soybean ovules (Glycine max L. cv. Dare) harvested from pods subtended by a trifoliolate exposed to 13CO2 1 to 3 days earlier. The high resolution spectra are interpreted in terms of the labeled sugars and lipids in the ovule. Comparison of the spectra taken over the 3-day period permits qualitative estimates of sugar metabolism and rates of lipid synthesis. The spectra also contain information about the distribution of labels within the lipid chains. This information leads to a method of estimating the extent to which glucose degradation in the synthesizing soybean ovule is involved in the reactions of the phosphogluconate pathway.  相似文献   

10.
The time course of suberization in wound periderm from potato (Solanum tuberosum L.) has been monitored by histochemical and high-resolution solid-state nuclear magnetic resonance (NMR) methods. Light microscopy conducted after selective staining of the lipid and double-bonded constituents shows that suberin is deposited at the outermost intact cell-wall surface during the first 7 d of wound healing; suberization forms a barrier to tissue infiltration at later times. Cross polarization-magic angle spinning 13C NMR spectra demonstrate the deposition of a polyester containing all major suberin functional groups after just 4 d of wound healing. Initially the suberin includes a large proportion of aromatic groups and fairly short aliphatic chains, but the spectral data demonstrate the growing dominance of long-chain species during the period 7 to 14 d after wounding. The results of preliminary 13C-labeling experiments with sodium [2-13C]acetate and DL-[1-13C]phenylalanine provide an excellent prospectus for future NMR-based studies of suberin biosynthesis.  相似文献   

11.
12.
We have evaluated the use of [1,2-13C2]propionate for the analysis of propionic acid metabolism, based on the ability to distinguish between the methylcitrate and methylmalonate pathways. Studies using propionate-adapted Escherichia coli MG1655 cells were performed. Preservation of the 13C-13C-12C carbon skeleton in labeled alanine and alanine-containing peptides involved in cell wall recycling is indicative of the direct formation of pyruvate from propionate via the methylcitrate cycle, the enzymes of which have recently been demonstrated in E. coli. Additionally, formation of 13C-labeled formate from pyruvate by the action of pyruvate-formate lyase is also consistent with the labeling of pyruvate C-1. Carboxylation of the labeled pyruvate leads to formation of [1,2-13C2]oxaloacetate and to multiply labeled glutamate and succinate isotopomers, also consistent with the flux through the methylcitrate pathway, followed by the tricarboxylic acid (TCA) cycle. Additional labeling of TCA intermediates arises due to the formation of [1-13C]acetyl coenzyme A from the labeled pyruvate, formed via pyruvate-formate lyase. Labeling patterns in trehalose and glycine are also interpreted in terms of the above pathways. The information derived from the [1, 2-13C2]propionate label is contrasted with information which can be derived from singly or triply labeled propionate and shown to be more useful for distinguishing the different propionate utilization pathways via nuclear magnetic resonance analysis.  相似文献   

13.
Leuconostoc oenos and malolactic fermentation in wine: a review   总被引:1,自引:0,他引:1  
This review article summarizes the state of the art on Leuconostoc oenos, the bacteria responsible for malolactic fermentation in wine. Both basic and practical aspects related to the metabolism of this microorganism and malolactic fermentation in general are critically reviewed. The former examines the role of genetics for the identification and classification of L. oenos and energetic mechanisms on solute transport (malic and lactic acid). The latter includes practical information on biomass production, optimal growth conditions and stress factors, which are important in growth optimization of malolactic starter cultures. Extensive data and references on the effect of malolactic fermentation on wine composition and sensory analysis are also included. Received 06 May 1999/ Accepted in revised form 13 July 1999  相似文献   

14.
A large number of strains of Oenococcus oeni (formerly Leuconostoc oenos) that had been isolated from wines were checked for lysogeny with mitomycin C as inducer. As a result of this test, 45% of the strains proved to be lysogenic, suggesting that lysogeny is widespread among bacteria isolated from wines during malolactic fermentation. The sensitivity of bacteria to phages was very different, depending on the strain. All the lysogenic strains were resistant to infection by the temperate phage they released. Some phages infected none of the strains. Phages of Oenoc. oeni had a classical morphology, an isometric head, and a long striated tail. With the broadest host strain as an indicator, phages were detected in wines after malolactic fermentation. Received: 28 November 1997 / Accepted: 5 January 1998  相似文献   

15.
16.
The availability of NMR spectrometers operating in cross polarization/magic angle spinning (CP-MAS) has provided a powerful tool for the structural elucidation of insoluble materials. In this 13C NMR study of eumelanins we report the first direct evidence of the presence of different chemical functionalities in synthetic and natural eumelanins. These spectra contain useful information for the characterization of melanins from different sources.  相似文献   

17.
Formation of methanethiol from methionine is widely believed to play a significant role in development of cheddar cheese flavor. However, the catabolism of methionine by cheese-related microorganisms has not been well characterized. Two independent methionine catabolic pathways are believed to be present in lactococci, one initiated by a lyase and the other initiated by an aminotransferase. To differentiate between these two pathways and to determine the possible distribution between the pathways, 13C nuclear magnetic resonance (NMR) performed with uniformly enriched [13C]methionine was utilized. The catabolism of methionine by whole cells and cell extracts of five strains of Lactococcus lactis was examined. Only the aminotransferase-initiated pathway was observed. The intermediate and major end products were determined to be 4-methylthio-2-oxobutyric acid and 2-hydroxyl-4-methylthiobutyric acid, respectively. Production of methanethiol was not observed in any of the 13C NMR studies. Gas chromatography was utilized to determine if the products of methionine catabolism in the aminotransferase pathway were precursors of methanethiol. The results suggest that the direct precursor of methanethiol is 4-methylthiol-2-oxobutyric acid. These results support the conclusion that an aminotransferase initiates the catabolism of methionine to methanethiol in lactococci.  相似文献   

18.
Pediococcus pentosaceus 12p and Leuconostoc oenos X2L isolated from Argentinian wine were examined for growth and changes in the concentrations of glucose, fructose, sucrose and mannitol and malic, citric, acetic and lactic acids in pure and mixed cultures. In mixed cultures a mutualistic growth response and a change in the balance of end-products of sugar and organic acid metabolism were observed. The production of mannitol and acetic acid was lower while D(-) and L(+) lactic acids were detected in higher levels than in pure cultures. Malic and citric acids were metabolized simultaneously, but the amount of citric acid consumed was lower than in pure culture of Leuc. oenos.  相似文献   

19.
The effect of the presence of ammonia on [1-13C]glucose metabolism in the rumen fibrolytic bacterium Fibrobacter succinogenes S85 was studied by 13C and 1H nuclear magnetic resonance (NMR). Ammonia halved the level of glycogen storage and increased the rate of glucose conversion into acetate and succinate 2.2-fold and 1.4-fold, respectively, reducing the succinate-to-acetate ratio. The 13C enrichment of succinate and acetate was precisely quantified by 13C-filtered spin-echo difference 1H-NMR spectroscopy. The presence of ammonia did not modify the 13C enrichment of succinate C-2 (without ammonia, 20.8%, and with ammonia, 21.6%), indicating that the isotopic dilution of metabolites due to utilization of endogenous glycogen was not affected. In contrast, the presence of ammonia markedly decreased the 13C enrichment of acetate C-2 (from 40 to 31%), reflecting enhanced reversal of the succinate synthesis pathway. The reversal of glycolysis was unaffected by the presence of ammonia as shown by 13C-NMR analysis. Study of cell extracts showed that the main pathways of ammonia assimilation in F. succinogenes were glutamate dehydrogenase and alanine dehydrogenase. Glutamine synthetase activity was not detected. Glutamate dehydrogenase was active with both NAD and NADP as cofactors and was not repressed under ammonia limitation in the culture. Glutamate-pyruvate and glutamate-oxaloacetate transaminase activities were evidenced by spectrophotometry and 1H NMR. When cells were incubated in vivo with [1-13C]glucose, only 13C-labeled aspartate, glutamate, alanine, and valine were detected. Their labelings were consistent with the proposed amino acid synthesis pathway and with the reversal of the succinate synthesis pathway.  相似文献   

20.
Solid-state 13C nuclear magnetic resonance was used to characterize the molecular ordering of cellulose in a cell-wall preparation containing mostly primary walls obtained from the leaves of Arabidopsis thaliana. Proton and 13C spin relaxation time constants showed that the cellulose was in a crystalline rather than a paracrystalline state or amorphous state. Cellulose chains were distributed between the interiors (40%) and surfaces (60%) of crystallites, which is consistent with crystallite cross-sectional dimensions of about 3 nm. Digital resolution enhancement revealed signals indicative of triclinic and monoclinic crystalline forms of cellulose mixed in similar proportions. Of the five nuclear spin relaxation processes used, proton rotating-frame relaxation provided the clearest distinction between cellulose and other cell-wall components for purposes of editing solid-state 13C nuclear magnetic resonance spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号