首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshly prepared spinach leaf protoplasts were gently ruptured by mechanical shearing followed by sucrose density gradient centrifugation to separate constituent cell organelles. The isolation of intact Class I chloroplasts (d = 1.21) in high yield, well separated from peroxisomes and mitochondria, was evidenced by the specific localization of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39), NADP triose-P dehydrogenase (EC 1.2.1.9), and carbonic anhydrase (EC 4.2.1.1) in the fractions. A clear separation of chloroplastic ribosomes from the soluble cytoplasmic ribosomes was also demonstrated by the band patterns of constituent RNA species in the polyacrylamide gel electrophoresis. Localization of several enzyme activities specific to leaf peroxisomes, e.g. catalase (EC 1.11.1.6), glycolate oxidase (EC 1.1.3.1), glyoxylate reductase (EC 1.1.1.26), glutamate glyoxylate aminotransferase (EC 2.6.1.4), serine glyoxylate aminotransferase, and alanine glyoxylate aminotransferase (EC 2.6.1.12) in the peroxisomal fractions (d = 1.25), was demonstrated. Overall results show the feasibility of the method for the isolation of pure organelle components in leaf tissues.  相似文献   

2.
Peroxisomes, whole chloroplasts, mitochondria, and broken chloroplasts of spinach (Spinacia oleracea L.), each form 1 band at its typical density, when isolated in sucrose gradients by isopycnic centrifugation in glycylglycine buffer. In potassium-phosphate buffer peroxisomes form a 2nd band at the density of whole chloroplasts. The phosphate effect is half-saturated at a concentration of 10–20 mM. If whole chloroplasts are removed by differential centrifugation before isopycnic centrifugation no second band is formed. Arsenate can be substituted for potassium phosphate while KCl, NaCl, KNO3 and glycolate cannot, showing inorganic phosphate to be the active ion. Evidence is presented showing that during isopycnic centrifugation more slowly sedimenting peroxisomes have to move through faster sedimented bands of whole and broken chloroplasts. In the presence of inorganic phosphate this leads to a specific interaction between whole chloroplasts and peroxisomes visible as a second peroxisomal band at the density of the whole chloroplasts. The relationship of the interaction in vitro to the known association of the two organelles in vivo is considered.  相似文献   

3.
Liang Z  Yu C  Huang AH 《Plant physiology》1982,70(4):1210-1212
A procedure for isolating spinach (Spinacia oleracea L.) leaf peroxisomes in 0.25 molar sucrose solution by Percoll density gradient centrifugation followed by removal of the Percoll by washing and centrifugation was established. The preparation contains more than 90% peroxisomes as intact organelles with no detectable chlorophyll or cytochrome oxidase contamination. The peroxisomes are stable at 0 to 4°C or 25°C for at least 2 hours.  相似文献   

4.
A procedure was developed to purify simultaneously peroxisomes and mitochondria from spinach (Spinacia oleracea L.) leaf under isoosmotic and low viscosity conditions. This method involved differential centrifugation and density gradient centrifugation on four layers of Percoll. Chlorophyll-free preparations of highly intact and active organelles were obtained and cross-contamination was negligible. Both organelles were stable for several hours, even if they remained in Percoll. Purified mitochondria were able to carry out the oxidation of different substrates with excellent respiratory control and ADP:O ratios. The method described in the present work was also suitable to purify mitochondria and peroxisomes from potato (Solanum tuberosum L.) tubers.  相似文献   

5.
Microbodies were isolated from the freshwater alga Vaucheria sessilis as well as from a marine Vaucheria. The organelles equilibrated on sucrose gradients at densities 1.23 g . cm?3 and 1.24g . cm?3, respectively. On electron micrographs they showed an ovoid or spheroid shape with a diameter of 0.5 to 0.8 μm. Besides catalase, the peroxisomes of both algae possess glycolate oxidase and glutamate-glyoxylate aminotransferase, but no other leaf-peroxisomal enzymes. Instead, the enzymes malate synthase and isocitrate lyase, which are markers of glyoxysomes in higher plants, are constituents of the peroxisomes in the marine as well as in the freshwater alga. Citrate synthase, aconitase, malate dehydrogenase and enzymes of the fatty acid β-oxidation pathway are located exclusively in the mitochondria. Therefore, the peroxisomes from Vaucheria do not belong to either the type of leaf peroxisomes or to the type of glyoxysomes.  相似文献   

6.
The distribution of alanine:2-oxoglutarate aminotransferase (EC 2.6.1.2) in spinach (Spinacia oleracea) leaf homogenates was examined by centrifugation in a sucrose density gradient. About 55% of the total homogenate activity was localized in the peroxisomes and the remainder in the soluble fraction. The peroxisomes contained a single form of alanine:2-oxoglutarate aminotransferase, and the soluble fraction contained two forms of the enzyme. Both the peroxisomal enzyme and the soluble predominant form (about 90% of the total soluble activity) were co-purified with glutamate:glyoxylate aminotransferase to homogeneity; it had been reported to be present exclusively in the peroxisomes of plant leaves and to participate in the glycollate pathway in leaf photorespiration [Tolbert (1971) Annu. Rev. Plant Physiol. 22, 45-74]. The evidence indicates that alanine:2-oxoglutarate aminotransferase and glutamate:glyoxylate aminotransferase activities are associated with the same protein. The peroxisomal and soluble enzyme preparations had nearly identical properties, suggesting that the soluble predominant alanine aminotransferase activity is from broken peroxisomes and about 96% of the total homogenate activity is located in peroxisomes.  相似文献   

7.
U. Winkler  H. Stabenau 《Planta》1995,195(3):403-407
Peroxisomes were isolated by gradient centrifugation from two different diatoms: Nitzschia laevis (subgroup of Pennales) and Thalassiosira fluviatilis (subgroup of Centrales). In neither of these organelles could catalase or any H2O2-forming oxidase be demonstrated. The glycolate-oxidizing enzyme present in the peroxisomes is a dehydrogenase capable of oxidizing l-lactate as well. The peroxisomes also contain the glyoxysomal markers isocitrate lyase and malate synthase. However, enzymes of the fatty-acid -oxidation pathway are located exclusively in the mitochondria. The mitochondria additionally possess glutamate-glyoxylate aminotransferase and a glycolate dehydrogenase which differs from the peroxisomal glycolate dehydrogenase since it preferably utilizes d-lactate as an alternative substrate. Hydroxypyruvate reductase and glyoxylate carboligase were not found in the cells of either diatom. By culturing Nitzschia laevis it could be demonstrated that decreasing the CO2 concentration in the aeration mixture from 2% to 0.03% and increasing the irradiance from 40 to 250 mol quanta · m–2 · s–1 resulted in an increase of all peroxisomal enzyme activities. In addition, enzyme activities of the -oxidation pathway were increased. However, mitochondrial glycolate dehydrogenase and aminotransferase did not alter their activities under these conditions. Summarizing all results, it is postulated that there are two different pathways for the metabolism of glycolate in the diatoms.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

8.
The content of spinach-leaf cells was compartmented by differential centrifugation. Three fractions were obtained,i.e. chloroplasts, pellet of remaining organelles sedimenting at 97 000g and cytosol. Enzyme activities of L-tryptophan aminotransferase (TAT) as well as L-tryptophan dehydrogenase (TDH) were demonstrated in all cell fractions. The highest activities of both enzymes were found in the pellet of organelles followed by the enzyme activities in the chloroplasts. The cytosol had the lowest enzyme activities. Chloroplasts are characterized by a relatively higher TDH activity, organelles sedimenting at 97 000g were marked by a relatively higher TAT activity. In all fractions both pyridine nucleotide coenzymes catalyzed the TDH activity. Ca2+ in a concentration of 0.8 minol l−1 increased markedly the TDH activity in both directions of its activity. An erratum to this article is available at .  相似文献   

9.
Mesembryanthemum crystallinum, a halophilic, inducible Crassulacean acid metabolism (CAM) species, was grown at NaCl concentrations of 20 and 400 millimolar in the rooting medium. Plants from the low salinity treatment showed exclusively C3-photosynthetic net CO2 fixation, whereas plants exposed to the high salinity level exhibited net CO2 dark fixation involving CAM. Mesophyll protoplasts, isolated from both tissues, were gently ruptured, and the intracellular localization of enzymes was studied following differential centrifugation and Percoll density gradient centrifugation of protoplast extracts. Both centrifugation techniques resulted in the separation of intact chloroplasts, with up to 90% yield, from other organelles and the nonparticulate fraction of cells. Enzymes were identified by determination of activity and by sodium dodecyl sulfate gel electrophoresis of enzyme protein.  相似文献   

10.
One of the most striking features of alkane-grown yeast cells is conspicuous appearance of peroxisomes in harmony with a high level of catalase. This unique phenomenon was first demonstrated in the authors′ laboratory, and the metabolic functions of peroxisomes in yeasts utilizing alkanes has been estabilished with intact peroxisomes isolated by density gradient centrifugation. The organelles participate in the degradation of fatty acids derived from alkanes to C2-units and the synthesis of gluconeogenic intermediates from C2-units. The abundant appearance of peroxisomes in alkane-utilizing cells has allowed successful production of several useful enzymes including catalase, D-amino acid oxidase, uricase, acyl-CoA oxidase etc. Yeast cells will be an excellent system for investigation the functions and development of peroxisomes because biogenesis of the organelles is induced only by transferring the cells into alkane medium from glucose or ethanol medium.  相似文献   

11.
Chloroplasts, mitochondria, and peroxisomes from leaves were separated by isopycnic sucrose density gradient centrifugation. The peroxisomes converted glycolate-14C or glyoxylate-14C to glycine, and contained a glutamate: glyoxylate aminotransferase as indicated by an investigation of substrate specificity. The pH optimum for the aminotransferase was between 7.0 and 7.5, and the Km for l-glutamate was 3.6 mm and for glyoxylate, 4.4 mm. The reaction of glutamate plus glyoxylate was not reversible. The isolated peroxisomes did not convert glycine to glyoxylate nor glycine to serine.  相似文献   

12.
The Xanthophycean alga Bumilleriopsis filiformis possesses peroxisomes which on electron micrographs show a mostly spherical or ovoid shape with a diameter in the range of 0.3 micrometer. Their granular matrix is usually of moderate electron density and in a very few cases contains amorphous inclusions. No associations with other organelles could be observed.

During separation in a sucrose gradient, the peroxisomes from Bumilleriopsis equilibrate at a density of 1.22 grams per cubic centimeter. Glycolate oxidase and glyoxylate-glutamate aminotransferase were found in the isolated organelles along with catalase and uricase. However, no further leaf peroxisomal enzymes were detected. This is the first time that an alga of the group of Xanthophyceae has been demonstrated to possess a glycolate oxidase.

The organelles from Bumilleriopsis differ from leaf peroxisomes also by the absence of enzymes of the β-oxidation pathway. All enzymes for the degradation of fatty acids which were tested are located solely in the mitochondria.

  相似文献   

13.
Microbodies (peroxisomes and glyoxysomes), mitochondria, and microsomes from rat liver, dog kidney, spinach leaves sunflower cotyledons, and castor bean endosperm were isolated by sucrose density-gradient centrifugation. The microbody-limiting membrane and microsomes each contained NADH-cytochrome c reductase and had a similar phospholipid composition. NADH-cytochrome c reductase from plant and animal microbodies and microsomes was insensitive to antimycin A, which inhibited the activity in the mitochondrial fractions. The pH optima of cytochrome c reductase in plant microbodies and microsomes was 7.5–9.0, which was 2 pH units higher than the optima for the mitochondrial form of the enzyme. The activity in animal organelles exhibited a broad pH optimum between pH 6 and 9. Rat liver peroxisomes retained cytochrome c reductase activity, when diluted with water, KCl, or EDTA solutions and reisolated. Cytochrome c reductase activity of microbodies was lost upon disruption by digitonin or Triton X-100, but other peroxisomal enzymes of the matrix were not destroyed. The microbody fraction from each tissue also contained a small amount of NADH-cytochrome b5 reductase activity. Peroxisomes from spinach leaves were broken by osmotic shock and particles from rat liver by diluting in alkaline pyrophosphate. Upon recentrifugation liver peroxisomes yielded a core fraction containing urate oxidase at a sucrose gradient density of 1.23 g × cm−3, a membrane fraction at 1.17 g × cm−3 containing NADH-cytochrome c reductase, and soluble matrix enzymes at the top of the gradient.  相似文献   

14.
The algae Mougeotia and Eremosphaera were used for isolation of microbodies with the characteristics of leaf peroxisomes and unspecialized peroxisomes, respectively. In both types of organelles, the following enzymes of the β-oxidation pathway were determined: acyl-CoA oxido-reductase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase. There are indications that the peroxisomal oxidoreductase of both algae is a H2O2-forming oxidase rather than a dehydrogenase.

The enzymes enoyl-CoA hydratase and acyl-CoA oxidoreductase are located also in the mitochondria from Eremosphaera but not from Mougeotia. The mitochondrial acyl-CoA oxidizing enzyme was found to be a dehydrogenase. The specific activities of acyl-CoA oxidase and enoyl-CoA hydratase are lower than in spinach leaf peroxisomes. However, the activity of 3-hydroxyacyl-CoA dehydrogenase in the peroxisomes of both algae is almost 2-fold higher. The capability for degradation of fatty acids is a common feature of all different types of peroxisomes from algae.

  相似文献   

15.
A Survey of Plants for Leaf Peroxisomes   总被引:28,自引:20,他引:8       下载免费PDF全文
Leaves of 10 plant species, 7 with photorespiration (spinach, sunflower, tobacco, pea, wheat, bean, and Swiss chard) and 3 without photorespiration (corn, sugarcane, and pigweed), were surveyed for peroxisomes. The distribution pattern for glycolate oxidase, glyoxylate reductase, catalase, and part of the malate dehydrogenase indicated that these enzymes exist together in this organelle. The peroxisomes were isolated at the interface between layers of 1.8 to 2.3 m sucrose by isopycnic nonlinear sucrose density gradient centrifugation or in 1.95 m sucrose on a linear gradient. Chloroplasts, located by chlorophyll, and mitochondria by cytochrome c oxidase, were in 1.3 to 1.8 m sucrose.In leaf homogenates from the first 7 species with photorespiration, glycolate oxidase activity ranged from 0.5 to 1.5 mumoles x min(-1) x g(-1) wet weight or a specific activity of 0.02 to 0.05 mumole x min(-1) x mg(-1) protein. Glyoxylate reductase activity was comparable with glycolate oxidase. Catalase activity in the homogenates ranged from 4000 to 12,000 mumoles x min(-1) x g(-1) wet weight or 90 to 300 mumoles x min(-1) x mg(-1) protein. Specific activities of malate dehydrogenase and cytochrome oxidase are also reported. In contrast, homogenates of corn and sugarcane leaves, without photorespiration, had 2 to 5% as much glycolate oxidase, glyoxylate reductase, and catalase activity. These amounts of activity, though lower than in plants with photorespiration, are, nevertheless, substantial.Peroxisomes were detected in leaf homogenates of all plants tested; however, significant yields were obtained only from the first 5 species mentioned above. From spinach and sunflower leaves, a maximum of about 50% of the marker enzyme activities was found to be in these microbodies after homogenization. The specific activity for peroxisomal glycolate oxidase and glyoxylate reductase was about 1 mumole x min(-1) x mg(-1) protein; for catalase. 8000 mumoles x min(-1) x mg(-1) protein, and for malate dehydrogenase, 40 mumoles x min(-1) x mg(-1) protein. Only small to trace amounts of marker enzymes for leaf peroxisomes were recovered on the sucrose gradients from the last 5 species of plants. Bean leaves, with photorespiration, had large amounts of these enzymes (0.57 mumole of glycolate oxidase x min(-1) x g(-1) tissue) in the soluble fraction, but only traces of activity in the peroxisomal fraction. Low peroxisome recovery from certain plants was attributed to particle fragility or loss of protein as well as to small numbers of particles in such plants as corn and sugarcane.Homogenates of pigweed leaves (no photorespiration) contained from one-third to one-half the activity of the glycolate pathway enzymes as found in comparable preparations from spinach leaves which exhibit photorespiration. However, only traces of peroxisomal enzymes were separated by sucrose gradient centrifugation of particles from pigweed. Data from pigweed on the absence of photorespiration yet abundance of enzymes associated with glycolate metabolism is inconsistent with current hypotheses about the mechanism of photorespiration.Most of the catalase and part of the malate dehydrogenase activity was located in the peroxisomes. Contrary to previous reports, the chloroplast fractions from plants with photo-respiration did not contain a concentration of these 2 enzymes, after removal of peroxisomes by isopycnic sucrose gradient centrifugation.  相似文献   

16.
Imoto SA  Ohta Y 《Plant physiology》1985,79(3):751-755
Intracellular localization of lunularic acid and prelunularic acid in suspension cultured cells of Marchantia polymorpha L. was studied. The sum of both compounds was determined as lunularic acid group (LNAs) because of the instability of prelunularic acid to convert into lunularic acid.

Mechanical disruption of the cells followed by differential centrifugation showed that LNAs was associated with the supernatant of 100,000g centrifugation. Protoplasts isolated from the cells were osmotically ruptured and the distribution of LNAs among the organelles was examined by discontinuous density gradient centrifugation of the protoplast contents. Successful isolation of intact chloroplasts, mitochondria and peroxisomes free from cytoplasm indicated that LNAs was not accumulated in these organelles. Flotation techniques resulted in an efficient isolation of pure vacuoles and revealed that LNAs was distributed almost equally in the vacuoles and cytoplasm.

  相似文献   

17.
The isolation of the photosynthetically competent chloroplast preparations was undertaken by means of the density gradient centrifugation on the modified silica sol “Percoll.” A clear separation of the intact chloroplast sustaining the high photosynthetic activities (light dependent CO2 fixation ca. 130μmol/mg Chl·hr) was established. The contamination of mitochondria and peroxisomes was estimated to be less than 3% by measuring the activities of their marker enzymes. The chloroplasts were proved to be free from endoplasmic reticulum and cytosol. The photosynthetic CO2 fixation of the isolated chloroplast preparations was saturated by illumination of the light intensity of 20,000 Lux (12 mW/cm2, 400~750 nm).  相似文献   

18.
The role of peroxisomes in the oxidative injury induced by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in leaves of pea (Pisum sativum L.) plants was studied. Applications of (2,4-D) on leaves or to root substrate increased the superoxide radical production in leaf peroxisomes. Foliar application also increased H2O2 contents in leaf peroxisomes. Reactive oxygen species (ROS) overproduction was accompanied by oxidative stress, as shown by the changes in lipid peroxidation, protein carbonyls, total and protein thiols, and by the up-regulation of the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, catalase, glucose 6-phosphate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. Foliar or root 2,4-D applications also induced senescence symptoms in pea leaf peroxisomes, as shown by the decrease of protein content and glycolate oxidase and hydroxypyruvate reductase activities, and by the increase of endopeptidase, xanthine oxidase, isocitrate lyase and acyl-CoA oxidase activities as well as of 3-ketoacyl-CoA thiolase and thiol-protease protein contents. 2,4-D did not induce proliferation of pea leaf peroxisomes but induced senescence-like morphological changes in these organelles. Results suggest that peroxisomes might contribute to 2,4-D toxicity in pea leaves by overproducing cell-damaging ROS and by participating actively in 2,4-D-induced leaf senescence.  相似文献   

19.
We compared C3 and CAM (crassulacean acid metabolism) states in Mesembryanthemum crystallinum, a facultative CAM species, with respect to the involvement of phosphoenolpyruvate carboxylase (PEPC) and nitrogen metabolismrelated enzymes in plant response to Botrytis cinerea infection. The enzyme activities were monitored both in pathogeninoculated 2nd leaf pair and non-inoculated 3rd leaf pair. The control activities of most studied enzymes were dependent on the mode of photosynthesis. Compared to C3 plants, those performing CAM exhibited higher PEPC, nitrate reductase (NR), and deaminating glutamate dehydrogenase (NAD-GDH) activities but lower glutamine synthetase (GS) and alanine aminotransferase (ALT) activities. Regardless of the mode of photosynthetic carbon assimilation, the plants responded to infection with enhancement of PEPC and inhibition of NR activities in the inoculated leaves. Whereas the activity of GS remained unaffected, those of all glutamate-yielding enzymes, namely ferredoxin-dependent glutamate synthase (Fd-GOGAT), aspartate aminotransferase (AST), ALT, and aminating glutamate dehydrogenase (NADHGDH) were altered after infection. However, the time-course and extent of the observed changes differed in C3 and CAM plants. In general, CAM plants responded to infection with an earlier increase in PEPC and Fd-GOGAT activities as well as later inhibition of NR activity. Contrary to C3 plants, in those performing CAM the activities of PEPC, Fd-GOGAT, NADH-GDH, and AST in the non-inoculated 3rd leaf pair were similarly influenced by infection as in leaves directly inoculated with the pathogen. This implies that the local infection induced an alteration of carbon/nitrogen status in healthy upper leaves. This reprogramming resulting from changes in PEPC and nitrogen metabolism-related enzymes was C3- and CAM-specific.  相似文献   

20.
Methods were developed for isolating highly-purified peroxisomes under iso-osmotic conditions from 3 plant parts, namely cotyledons of cotton ( Gossypium hirsutum L.) seedlings, endosperm of castor bean ( Ricinus communis L.) seedlings and leaves of mature spinach ( Spinaca oleracea L.) plants. Purification was achieved by sedimentation of the organelles into metrizamide gradients centrifuged in a vertical rotor (VTi 50). Gradients consisted of an upper transition layer (1:1 mixture of homogenizing medium and 0.25 M metrizamide), a linear 0.25–0.76 M metrizamide gradient and a 0.76 M metrizamide pad. Peroxisomes from all 3 plant parts were recovered in a major band at a density ranging from 1.24 to 1.27 g cm−3, which is a density range similar to that for peroxisomes isolated in sucrose gradients. The percent of the total gradient cytochrome c oxidase (mitochondria marker) activity recovered in peroxisome fractions ranged from 1.5% in endosperm to 2.8% in leaves, while a plastid marker (chlorophyll or galactosyl transferase activity) ranged from undetectable in leaf peroxisome fractions to 3.6% in endosperm peroxisome fractions. Intactness of the peroxisomes was judged to be 69%, 89% and 78% for the cotyledon, endosperm and leaf peroxisomes, respectively. Isolated peroxisomes were stable for at least 5 h in metrizamide medium. Microscopic (bright-field and transmission electron microscopy) assessments verified that the peroxisomes were morphologically intact and fractions were essentially free of contaminating organelles. Metrizamide is an excellent iso-osmotic medium for purifying peroxisomes from these plant organs and tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号