首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 426 毫秒
1.
Biosynthesis of pectin   总被引:4,自引:0,他引:4  
Pectin consists of a group of acidic polysaccharides that constitute a large part of the cell wall of plants. The pectic polysaccharides have a complex structure but can generally be divided into homogalacturonan, rhamnogalacturonan I, rhamnogalacturonan II (RGII) and xylogalacturonan (XGA). These polysaccharides appear to be present in all cells but their relative abundance and structural details differ between cell types and species. Pectin is synthesized in the Golgi vesicles and its complexity dictates that a large number of enzymes must be involved in the process. The biosynthetic enzymes required are glycosyltransferases and decorating enzymes including methyltransferases, acetyltransferases and feruloyltransferases. Biochemical methods successfully led to the recent identification of a pectin biosynthetic galacturonosyltransferase (GAUT1), and recent functional genomics and mutant studies have allowed the identification of several biosynthetic enzymes involved in making different parts of pectin. Strong evidence has been obtained for two xylosyltransferases (RGXT1 and RGXT2) with documented in vitro activity and apparently involved in making a side chain of RGII. Strong circumstantial evidence has been obtained for a putative glucuronosyltransferase (GUT1) involved in making RGII, a putative arabinosyltransferase (ARAD1) involved in making arabinan, and a putative xylosyltransferase (XGD1) involved in making XGA. In several other cases, enzymes have been identified as involved in making pectin but because of ambiguity in the cell wall compositions of mutants and lack of direct biochemical evidence their specific activities are more uncertain.  相似文献   

2.
The function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology. Biochemical characterization of cell wall polysaccharides isolated from xxt5 mutant seedlings demonstrated decreased xyloglucan quantity and reduced glucan backbone substitution with xylosyl residues. Immunohistochemical analyses of xxt5 plants revealed a selective decrease in some xyloglucan epitopes, whereas the distribution patterns of epitopes characteristic for other cell wall polysaccharides remained undisturbed. Transformation of xxt5 plants with a 35S::HA-XXT5 construct resulted in complementation of the morphological, biochemical and immunological phenotypes, restoring xyloglucan content and composition to wild-type levels. These data provide evidence that XXT5 is a xyloglucan alpha-1,6-xylosyltransferase, and functions in the biosynthesis of xyloglucan.  相似文献   

3.
Bowman SM  Piwowar A  Ciocca M  Free SJ 《Mycologia》2005,97(4):872-879
Two Neurospora mutants with a phenotype that includes a tight colonial growth pattern, an inability to form conidia and an inability to form protoperithecia have been isolated and characterized. The relevant mutations were mapped to the same locus on the sequenced Neurospora genome. The mutations responsible for the mutant phenotype then were identified by examining likely candidate genes from the mutant genomes at the mapped locus with PCR amplification and a sequencing assay. The results demonstrate that a map and sequence strategy is a feasible way to identify mutant genes in Neurospora. The gene responsible for the phenotype is a putative alpha-1,2-mannosyltransferase gene. The mutant cell wall has an altered composition demonstrating that the gene functions in cell wall biosynthesis. The results demonstrate that the mnt-1 gene is required for normal cell wall biosynthesis, morphology and for the regulation of asexual development.  相似文献   

4.
We have isolated five Chinese hamster ovary cell mutants defective in galactosyltransferase I (UDP-D-galactose:xylose beta-1,4-D-galactosyltransferase) and studied the effect of p-nitrophenyl-beta-D-xyloside supplementation on glycosaminoglycan biosynthesis in the mutant cells. Assays of galactosyltransferase I showed that the mutants contained less than 2% of the enzyme activity present in wild-type cells, and enzyme activity was additive in mixtures of mutant and wild-type cell extracts, suggesting that the mutations most likely defined the structural gene encoding the enzyme. Cell hybridization studies showed that the mutations in all five strains were recessive and that the mutants belonged to the same complementation group. The mutants contained wild-type levels of xylosyltransferase (UDP-D-xylose:core protein (serine) beta-D-xylosyltransferase), lactose synthase (UDP-D-galactose:N-acetyl-glucosaminide beta-1,4-D-galactosyltransferase), and lactosylceramide synthase (UDP-D-galactose:glucosylceramide beta-1,4-D-galactosyltransferase). Their sensitivity to lectin-mediated cytotoxicity was virtually identical to that of the wild-type, indicating that there were no gross alterations in glycoprotein or glycolipid compositions. Anion-exchange high performance liquid chromatography of 35S-glycosaminoglycans from one of the galactosyltransferase I-deficient mutants showed a dramatic reduction in both heparan sulfate and chondroitin sulfate, demonstrating that galactosyltransferase I is responsible for the formation of both glycosaminoglycans in intact cells. Surprisingly, the addition of 1 mM-p-nitrophenyl-beta-D-xyloside, a substrate for galactosyltransferase I, restored glycosaminoglycan synthesis in mutant cells. This finding suggested that another galactosyltransferase, possibly lactose synthase, can transfer galactose to xylose in intact cells.  相似文献   

5.
D-apiose serves as the binding site for borate cross-linking of rhamnogalacturonan II (RG-II) in the plant cell wall, and biosynthesis of D-apiose involves UDP-D-apiose/UDP-D-xylose synthase catalyzing the conversion of UDP-D-glucuronate to a mixture of UDP-D-apiose and UDP-D-xylose. In this study we have analyzed the cellular effects of depletion of UDP-D-apiose/UDP-D-xylose synthases in plants by using virus-induced gene silencing (VIGS) of NbAXS1 in Nicotiana benthamiana. The recombinant NbAXS1 protein exhibited UDP-D-apiose/UDP-D-xylose synthase activity in vitro. The NbAXS1 gene was expressed in all major plant organs, and an NbAXS1-green fluorescent protein fusion protein was mostly localized in the cytosol. VIGS of NbAXS1 resulted in growth arrest and leaf yellowing. Microscopic studies of the leaf cells of the NbAXS1 VIGS lines revealed cell death symptoms including cell lysis and disintegration of cellular organelles and compartments. The cell death was accompanied by excessive formation of reactive oxygen species and by induction of various protease genes. Furthermore, abnormal wall structure of the affected cells was evident including excessive cell wall thickening and wall gaps. The mutant cell walls contained significantly reduced levels of D-apiose as well as 2-O-methyl-L-fucose and 2-O-methyl-D-xylose, which serve as markers for the RG-II side chains B and A, respectively. These results suggest that VIGS of NbAXS1 caused a severe deficiency in the major side chains of RG-II and that the growth defect and cell death was likely caused by structural alterations in RG-II due to a D-apiose deficiency.  相似文献   

6.
Cellulose synthase catalytic subunits (CesAs) have been implicated in catalyzing the biosynthesis of cellulose, the major component of plant cell walls. Interactions between CesA subunits are thought to be required for normal cellulose synthesis, which suggests that incorporation of defective CesA subunits into cellulose synthase complex could potentially cause a dominant effect on cellulose synthesis. However, all CesA mutants so far reported have been shown to be recessive in terms of cellulose synthesis. In the course of studying the molecular mechanisms regulating secondary wall formation in fibers, we have found that a mutant allele of AtCesA7 gene in the fra5 (fragile fiber 5) mutant causes a semidominant phenotype in the reduction of fiber cell wall thickness and cellulose content. The fra5 missense mutation occurred in a conserved amino acid located in the second cytoplasmic domain of AtCesA7. Overexpression of the fra5 mutant cDNA in wild-type plants not only reduced secondary wall thickness and cellulose content but also decreased primary wall thickness and cell elongation. In contrast, overexpression of the fra6 mutant form of AtCesA8 did not cause any reduction in cell wall thickness and cellulose content. These results suggest that the fra5 mutant protein may interfere with the function of endogenous wild-type CesA proteins, thus resulting in a dominant negative effect on cellulose biosynthesis.  相似文献   

7.
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.  相似文献   

8.
In plants, a proposed ascorbate (vitamin C) biosynthesis pathway occurs via GDP-D-mannose (GDP-D-Man), GDP-L-galactose (GDP-L-Gal), and L-galactose. However, the steps involved in the synthesis of L-Gal from GDP-L-Gal in planta are not fully characterized. Here we present evidence for an in vivo role for L-Gal-1-P phosphatase in plant ascorbate biosynthesis. We have characterized a low ascorbate mutant (vtc4-1) of Arabidopsis thaliana, which exhibits decreased ascorbate biosynthesis. Genetic mapping and sequencing of the VTC4 locus identified a mutation (P92L) in a gene with predicted L-Gal-1-P phosphatase activity (At3g02870). Pro-92 is within a beta-bulge that is conserved in related myo-inositol monophosphatases. The mutation is predicted to disrupt the positioning of catalytic amino acid residues within the active site. Accordingly, L-Gal-1-P phosphatase activity in vtc4-1 was approximately 50% of wild-type plants. In addition, vtc4-1 plants incorporate significantly more radiolabel from [2-(3)H]Man into L-galactosyl residues suggesting that the mutation increases the availability of GDP-L-Gal for polysaccharide synthesis. Finally, a homozygous T-DNA insertion line, which lacks a functional At3g02870 gene product, is also ascorbate-deficient (50% of wild type) and deficient in L-Gal-1-P phosphatase activity. Genetic complementation tests revealed that the insertion mutant and VTC4-1 are alleles of the same genetic locus. The significantly lower ascorbate and perturbed L-Gal metabolism in vtc4-1 and the T-DNA insertion mutant indicate that L-Gal-1-P phosphatase plays a role in plant ascorbate biosynthesis. The presence of ascorbate in the T-DNA insertion mutant suggests there is a bypass to this enzyme or that other pathways also contribute to ascorbate biosynthesis.  相似文献   

9.
We have developed a xylose-dependent expression system for tight and modulated expression of cloned genes in Bacillus subtilis. The expression system is contained on plasmid pSWEET for integration at the amyE locus of B. subtilis and incorporates components of the well-characterized, divergently transcribed xylose utilization operon. The system contains the xylose repressor encoded by xylR, the promoter and 5' portion of xylA containing an optimized catabolite-responsive element, and intergenic xyl operator sequences. We have rigorously compared this expression system to the isopropyl-beta-D-thiogalactopyranoside-induced spac system using a thermostable beta-galactosidase reporter (BgaB) and found the xyl promoter-operator to have a greater capacity for modulated expression, a higher induction/repression ratio (279-fold for the xyl system versus 24-fold with the spac promoter), and lower levels of expression in the absence of an inducer. We have used this system to probe an essential function in wall teichoic acid biosynthesis in B. subtilis. Expression of the teichoic acid biosynthesis gene tagD, encoding glycerol-3-phosphate cytidylyltransferase, from the xylose-based expression system integrated at amyE exhibited xylose-dependent complementation of the temperature-sensitive mutant tag-12 when grown at the nonpermissive temperature. Plasmid pSWEET thus provides a robust new expression system for conditional complementation in B. subtilis.  相似文献   

10.
11.
12.
13.
    
To obtain more information about the cell wall organization of Saccharomyces cerevisiae, we have developed a novel screening system to obtain cell wall-defective mutants, using a density gradient centrifugation method. Nine hypo-osmolarity-sensitive mutants were classified into two complementation groups, hpo1 and hpo2. Phase contrast microscopic observation showed that mutant cells bearing lesions at either locus became abnormally large. A gene that complemented the mutant phenotype of hpo2 was cloned and sequenced. This gene turned out to be identical to PKC1, which encodes the yeast homologue of mammalian protein kinase C. Complementation tests with pkc1 showed that hpo2 is allelic to pkc1. To study the reason for the fragility of hpo2 cells, cell wall was isolated and the glucan was analyzed. The amount of alkali, acid-insoluble glucan, which is responsible for the rigidity of the cell wall, was reduced to about 30% that of the wild-type cell and this may be the major cause of the fragility of the hpo2 mutant cell. Analysis of total wall proteins in hpo2 mutant cells on SDS-polyacrylamide gels revealed that a 33 kDa protein was overproduced two- to threefold relative to the wild-type level. This 33 kDa protein was identified as a -glucanase, encoded by BGL2. Disruption of BGL2 in the hpo2 mutant partially rescued the growth rate defect. This suggests that the PKC1 kinase cascade regulates BGL2 expression negatively and overproduction of the -glucanase is partially responsible for the growth defect. Since the bgl2 disruption did not rescue the hypo-osmolarty-sensitive phenotype of the hpo2 mutant, PKC1 must negatively regulate other enzymes involved in the biosynthesis and metabolism of the cell wall.  相似文献   

14.
KRE6 encodes a predicted type II membrane protein which, when disrupted, results in a slowly growing, killer toxin-resistant mutant possessing half the normal level of a structurally wild-type cell wall (1-->6)-beta-glucan (T. Roemer and H. Bussey, Proc. Natl. Acad. Sci. USA 88:11295-11299, 1991). The mutant phenotype and structure of the KRE6 gene product, Kre6p, suggest that it may be a beta-glucan synthase component, implying that (1-->6)-beta-glucan synthesis in Saccharomyces cerevisiae is functionally redundant. To examine this possibility, we screened a multicopy genomic library for suppression of both the slow-growth and killer resistance phenotypes of a kre6 mutant and identified SKN1, which encodes a protein sharing 66% overall identity to Kre6p. SKN1 suppresses kre6 null alleles in a dose-dependent manner, though disruption of the SKN1 locus has no effect on killer sensitivity, growth, or (1-->6)-beta-glucan levels. skn1 kre6 double disruptants, however, showed a dramatic reduction in both (1-->6)-beta-glucan levels and growth rate compared with either single disruptant. Moreover, the residual (1-->6)-beta-glucan polymer in skn1 kre6 double mutants is smaller in size and altered in structure. Since single disruptions of these genes lead to structurally wild-type (1-->6)-beta-glucan polymers, Kre6p and Skn1p appear to function independently, possibly in parallel, in (1-->6)-beta-glucan biosynthesis.  相似文献   

15.
Candida tropicalis was treated with ultraviolet (UV) rays, and the mutants obtained were screened for xylitol production. One of the mutants, the UV1 produced 0.81 g of xylitol per gram of xylose. This was further mutated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and the mutants obtained were screened for xylitol production. One of the mutants (CT-OMV5) produced 0.85 g/g of xylitol from xylose. Xylitol production improved to 0.87 g/g of xylose with this strain when the production medium was supplemented with urea. The CT-OMV5 mutant strain differs by 12 tests when compared to the wild-type Candida tropicalis strain. The XR activity was higher in mutant CT-OMV5. The distinct difference between the mutant and wild-type strain is the presence of numerous chlamydospores in the mutant. In this investigation, we have demonstrated that mutagenesis was successful in generating a superior xylitol-producing strain, CT-OMV5, and uncovered distinctive biochemical and physiological characteristics of the wild-type and mutant strain, CT-OMV5.  相似文献   

16.
To obtain more information about the cell wall organization of Saccharomyces cerevisiae, we have developed a novel screening system to obtain cell wall-defective mutants, using a density gradient centrifugation method. Nine hypo-osmolarity-sensitive mutants were classified into two complementation groups, hpo1 and hpo2. Phase contrast microscopic observation showed that mutant cells bearing lesions at either locus became abnormally large. A gene that complemented the mutant phenotype of hpo2 was cloned and sequenced. This gene turned out to be identical to PKC1, which encodes the yeast homologue of mammalian protein kinase C. Complementation tests with pkc1Δ showed that hpo2 is allelic to pkc1. To study the reason for the fragility of hpo2 cells, cell wall was isolated and the glucan was analyzed. The amount of alkali, acid-insoluble glucan, which is responsible for the rigidity of the cell wall, was reduced to about 30% that of the wild-type cell and this may be the major cause of the fragility of the hpo2 mutant cell. Analysis of total wall proteins in hpo2 mutant cells on SDS-polyacrylamide gels revealed that a 33 kDa protein was overproduced two- to threefold relative to the wild-type level. This 33 kDa protein was identified as a β-glucanase, encoded by BGL2. Disruption of BGL2 in the hpo2 mutant partially rescued the growth rate defect. This suggests that the PKC1 kinase cascade regulates BGL2 expression negatively and overproduction of the β-glucanase is partially responsible for the growth defect. Since the bgl2 disruption did not rescue the hypo-osmolarty-sensitive phenotype of the hpo2 mutant, PKC1 must negatively regulate other enzymes involved in the biosynthesis and metabolism of the cell wall.  相似文献   

17.
The CHS5 locus of Saccharomyces cerevisiae is important for wild-type levels of chitin synthase III activity. chs5 cells have reduced levels of this activity. To further understand the role of CHS5 in yeast, the CHS5 gene was cloned by complementation of the Calcofluor resistance phenotype of a chs5 mutant. Transformation of the mutant with a plasmid carrying CHS5 restored Calcofluor sensitivity, wild-type cell wall chitin levels, and chitin synthase III activity levels. DNA sequence analysis reveals that CHS5 encodes a unique polypeptide of 671 amino acids with a molecular mass of 73,642 Da. The predicted sequence shows a heptapeptide repeated 10 times, a carboxy-terminal lysine-rich tail, and some similarity to neurofilament proteins. The effects of deletion of CHS5 indicate that it is not essential for yeast cell growth; however, it is important for mating. Deletion of CHS3, the presumptive structural gene for chitin synthase III activity, results in a modest decrease in mating efficiency, whereas chs5delta cells exhibit a much stronger mating defect. However, chs5 cells produce more chitin than chs3 mutants, indicating that CHS5 plays a role in other processes besides chitin synthesis. Analysis of mating mixtures of chs5 cells reveals that cells agglutinate and make contact but fail to undergo cell fusion. The chs5 mating defect can be partially rescued by FUS1 and/or FUS2, two genes which have been implicated previously in cell fusion, but not by FUS3. In addition, mating efficiency is much lower in fus1 fus2 x chs5 than in fus1 fus2 x wild type crosses. Our results indicate that Chs5p plays an important role in the cell fusion step of mating.  相似文献   

18.
The function of a putative glycosyltransferase (At2g35100) was investigated in Arabidopsis (Arabidopsis thaliana). The protein is predicted to be a type 2 membrane protein with a signal anchor. Two independent mutant lines with T-DNA insertion in the ARABINAN DEFICIENT 1 (ARAD1) gene were analyzed. The gene was shown to be expressed in all tissues but particularly in vascular tissues of leaves and stems. Analysis of cell wall polysaccharides isolated from leaves and stems showed that arabinose content was reduced to about 75% and 46%, respectively, of wild-type levels. Immunohistochemical analysis indicated a specific decrease in arabinan with no change in other pectic domains or in glycoproteins. The cellular structure of the stem was also not altered. Isolated rhamnogalacturonan I from mutant tissues contained only about 30% of the wild-type amount of arabinose, confirming the specific deficiency in arabinan. Linkage analysis showed that the small amount of arabinan present in mutant tissue was structurally similar to that of the wild type. Transformation of mutant plants with the ARAD1 gene driven by the 35S promoter led to full complementation of the phenotype, but none of the transformants had more arabinan than the wild-type level. The data suggest that ARAD1 is an arabinan alpha-1,5-arabinosyltransferase. To our knowledge, the identification of other L-arabinosyltransferases has not been published.  相似文献   

19.
通过甲基磺酸乙酯(EMS)诱变与遗传分析,从拟南芥(Arabidopsis thaliana)中筛选到一株隐性单基因控制的网状突变体E-210。该突变体植株生长缓慢,叶脉呈绿色,叶肉呈黄色。通过透射电镜观察,发现野生型植株和突变植株在叶绿体结构上差异不大,猜测该突变体E-210基因与叶绿体的发育可能没有直接关系,而很可能同叶绿素或叶绿体的生物合成有关。通过图位克隆的方法,将该突变体的突变基因定位在第5条染色体上的MRB17和MBG8-5的分子标记之间,精确到87.130kb。对MRB17和MBG8-5的分子标记之间的22个基因进行了分析,预测突变体E-210基因可能是At5g54770,编码THI1,即噻唑合成酶。  相似文献   

20.
J C Ribas  M Diaz  A Duran    P Perez 《Journal of bacteriology》1991,173(11):3456-3462
Schizosaccharomyces pombe thermosensitive mutants requiring the presence of an osmotic stabilizer to survive and grow at a nonpermissive temperature were isolated. The mutants were genetically and biochemically characterized. In all of them, the phenotype segregated in Mendelian fashion as a single gene which coded for a recessive character. Fourteen loci were defined by complementation analysis. Studies of cell wall composition showed a reduction in the amount of cell wall beta-glucan in three strains (JCR1, JCR5, and JCR10) when growing at 37 degrees C. Galactomannan was diminished in two others. Strains JCR1 and JCR5, with mutant alleles cwg1-1 and cwg2-1, respectively, were further studied. The cwg1 locus was mapped on the right arm of chromosome III, 18.06 centimorgans (cM) to the left of the ade5 marker; cwg2 was located on the left arm of chromosome I, 34.6 cM away from the aro5 marker. (1-3)beta-D-Glucan synthase activities from cwg1-1 and cwg2-1 mutant strains grown at 37 degrees C were diminished, as measured in vitro, compared with the wild-type strain; however, Km values and activation by GTP were similar to the wild-type values. Mutant synthases behaved like the wild-type enzyme in terms of thermostability. Analyses of round shape, lytic behavior, and low (1-3)beta-D-glucan synthase activity in cultures derived from ascospores of the same tetrad showed cosegregation of all these characters. Detergent dissociation of (1-3)beta-D-glucan synthase into soluble and particulate fractions and subsequent reconstitution demonstrated that the cwg1-1 mutant was affected in the particulate fraction of the enzymatic activity while cwg2-1 was affected in the soluble component. The antifungal agents Papulacandin B and Aculeacin A had similar effects on the enzymatic activities of the wild type and the cwg2-1 mutant strain, whereas the cwg1-1 mutant, when growing at 37 degrees C, had a more inhibitor-resistant (1,3)beta-D-glucan synthase. It is concluded that the cwg1+ and cwg2+ genes are related to (1,3)beta-D-glucan biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号