首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Namaqua rock mouse Aethomys namaquensis, a rodent pollinator of certain geoflorous Protea species, consumes nectar containing xylose. Xylose is not known to be efficiently utilized by mammals. However, it is fermented by certain bacteria, yeasts, and fungi, particularly gastrointestinal bacteria. The end products of microbial fermentation are utilized by the host in oxidative metabolism. Here we investigate the degree to which intestinal bacteria of A. namaquensis contribute to xylose metabolism. Mice were caught during Protea humiflora flowering and nonflowering seasons and given an oral dose of 14C-labeled xylose. Exhaled CO2 and excreted urine and feces were continuously collected for 30 h thereafter, and label recovery was determined. Each mouse was then treated with antibiotics to reduce gut microflora, and the experiment was repeated. With their natural gut flora population intact, mice caught during the flowering season exhaled significantly more 14CO2 than did mice caught during the nonflowering season. Also, during both seasons, mice exhaled significantly more 14CO2 before antibiotic treatment than after. Antibiotic treatment caused a significant increase in the proportion of 14C-labeled xylose that was excreted in the urine. The mouse diet likely influences the composition of the gastrointestinal community. Aethomys namaquensis relies on its gut microflora to ferment xylose, thereby converting it into end products that are used by the mice for metabolism.  相似文献   

2.
The mycelium of Streptomyces chryzomallus var. macrotetrolidi producing the macrotetrolide antibiotic nonactin was shown to be capable of carbon dioxide fixation. Carbon was found to be incorporated into nonactin and macromolecular compounds in the biomass. Carbon was incorporated within 20 to 40 min of the mycelium incubation with NaH14CO3. Pyruvic and propionic acids stimulated carbon incorporation.  相似文献   

3.
14CO2 production is no adequate measure of [14C]fatty acid oxidation   总被引:3,自引:0,他引:3  
Palmitate oxidation was comparatively assayed in various cell-free and cellular systems by 14CO2 production and by the sum of 14CO2 and 14C-labeled acid-soluble products. The 14CO2 production rate was dependent on incubation time and amount of tissue in contrast to the total oxidation rate. The 14CO2 contribution to the oxidation rate of [1-14C]palmitate varied with homogenates from 1% with rat liver to 28% with rat kidney and amounted to only 2-4% with human muscles. With cellular systems the 14CO2 contribution varied between 20% in human fibroblasts and 70% in rat muscles and myocytes. Addition of cofactors increased the oxidation rate, but decreased the 14CO2 contribution. Various conditions appeared also to influence to a different extent the 14CO2 production and the total oxidation rate with rat tissue homogenates and with rat muscle mitochondria. Incorporation of radioactivity from [1-14C]palmitate into protein was not detectable in cell-free systems and only 2-3% of the sum of 14CO2 and 14C-labeled acid-soluble products in cellular systems. Assay of 14CO2 and 14C-labeled acid-soluble products is a much more accurate and sensitive estimation of fatty acid oxidation than assay of only 14CO2.  相似文献   

4.
Fetal CO2 kinetics   总被引:1,自引:0,他引:1  
Knowledge of CO2 kinetics in the fetus is important for the design and interpretation of fetal metabolic studies that use carbon-labelled tracers. To study fetal CO2 kinetics, four fetal sheep were infused at constant rate with NaH14CO3 to simulate a constant rate of fetal 14CO2 production from the metabolism of a 14C-labelled substrate. Uterine and umbilical blood flows, and concentrations of 14CO2 and total CO2 in umbilical arterial and venous blood and in uterine arterial and venous blood were measured. During steady state, the excretion of 14CO2 via the umbilical circulation was 99.6 +/- 1.0 (SEM)% of the NaH14CO3 infusion rate. The irreversible disposal rate of CO2 molecules from the fetal CO2 pool was approximately 5 times greater than the metabolic production of CO2 by the fetus. This evidence demonstrates that measurements of fetal 14CO2 excretion via the umbilical circulation can provide an accurate measurement of fetal 14CO2 production and that the exchange rate of CO2 molecules between placenta and fetal blood is much greater than the net rate of excretion of CO2 molecules from fetus to placenta.  相似文献   

5.
The catabolism of glycine in the isolated perfused rat liver was investigated by measuring the production of 14CO2 from [1-14C]- and [2-14C]glycine. Production of 14CO2 from [1-14C]glycine was maximal as the perfusate glycine concentration approached 10 mM and exhibited a maximal activity of 125 nmol of 14CO2 X g-1 X min-1 and an apparent Km of approximately 2 mM. Production of 14CO2 from [2-14C]glycine was much lower, approaching a maximal activity of approximately 40 nmol of 14CO2 X g-1 X min-1 at a perfusate glycine concentration of 10 mM, with an apparent Km of approximately 2.5 mM. Washout kinetic experiments with [1-14C]glycine exhibited a single half-time of 14CO2 disappearance, indicating one metabolic pool from which the observed 14CO2 production is derived. These results indicate that the glycine cleavage system is the predominant catabolic fate of glycine in the perfused rat liver and that production of 14CO2 from [1-14C]glycine is an effective monitor of metabolic flux through this system. Metabolic flux through the glycine cleavage system in the perfused rat liver was inhibited by processes which lead to reduction of the mitochondrial NAD(H) redox couple. Infusion of beta-hydroxybutyrate or octanoate inhibited 14CO2 production from [1-14C]glycine by 33 and 50%, respectively. Alternatively, infusion of acetoacetate stimulated glycine decarboxylation slightly and completely reversed the inhibition of 14CO2 production by octanoate. Metabolic conditions which are known to cause a large consumption of mitochondrial NADPH (e.g. ureogenesis from ammonia) stimulated glycine decarboxylation by the perfused rat liver. Infusion of pyruvate and ammonium chloride stimulated production of 14CO2 from [1-14C]glycine more than 2-fold. Lactate plus ammonium chloride was equally as effective in stimulating glycine decarboxylation by the perfused rat liver, while alanine plus ammonium chloride was ineffective in stimulating 14CO2 production.  相似文献   

6.
(14)CO(2) production by perfused rat livers was simulated by infusing NaH(14)CO(3) into the perfusate. Recovery of label as (14)CO(2) gas + perfusate bicarbonate was 45-85%. Rates of (14)CO(2) exchange in the liver are 3-70 times greater than net rates of CO(2) production. Therefore (14)CO(2) reincorporation can lead to significant underestimations of rates of oxidation of (14)C-labelled substrates in liver.  相似文献   

7.
Previous estimates of flux through the pyruvate-dehydrogenase complex were made by measuring 14CO2 generated from oxidation of [1-14C]pyruvate, assuming a 1:1 stoichiometry. However, this method fails to discriminate between 14CO2 produced from pyruvate dehydrogenase and 14CO2 generated from phospho-enolpyruvate carboxykinase and citric-acid-cycle dehydrogenases. While some previous reports have attempted to correct for the additional 14CO2 production by comparing 14CO2 generated by [1-14C]pyruvate with [2-14C]pyruvate or [3-14C]pyruvate, the estimates are flawed by failure to determine the radioactivity and distribution of the 14C label in the oxalacetate pool. The present method circumvents these problems by utilizing [1,4-14C]succinate to radiolabel the oxalacetate pool and by directly measuring the specific radioactivity of malate. The results demonstrate that flux through the pyruvate-dehydrogenase complex is negligible compared to the other reactions which generate 14CO2 from [1-14C]lactate in the fasted state. Phenylephrine did not significantly alter this result in the fasted state. However, 14CO2 production via the pyruvate-dehydrogenase complex is large (approximately 11.5 nmol.min-1.mg mitochondrial protein-1) compared to 14CO2 production via phosphoenolpyruvate carboxykinase and citric-acid-cycle dehydrogenases (approximately 6.4 nmol.min-1.mg-1) when the pyruvate-dehydrogenase complex is activated, in the fed state with 1 mM dichloroacetate.  相似文献   

8.
The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TCA-cycle-related pathways. Results of this study indicated that the ratio of 14CO2 produced from [1,4-14C]succinate to 14CO2 produced from [2,3-14C]succinate was increased by the addition of glutamine (5 mM) to the medium. An increase in the succinate CO2 ratio is quantitatively related to an increased flux of unlabelled carbon into the TCA-cycle-intermediate pools. Analysis of 14C distribution in [14C]citrate derived from [2,3-14C]succinate indicated that flux from the TCA cycle to the acetyl-CoA-derived carbons of citrate was insignificant. Thus the increased succinate CO2 ratio observed in the presence of glutamine could only result from an increased flux of carbon into the span of the TCA cycle from citrate to oxaloacetate. This result is consistent with increased flux of glutamine to alpha-oxoglutarate in the incubation medium containing exogenous glutamine. Comparison of the pyruvate CO2 ratio, steady-state 14CO2 production from [2-14C]pyruvate versus [3-14C]pyruvate, with the succinate 14CO2 ratio detected flux of pyruvate to C4 TCA-cycle intermediates in the medium containing glutamine. This result was consistent with the observation that [14C]aspartate derived from [2-14C]pyruvate was labelled in C-2 and C-3. 14C analysis also produced evidence for flux of TCA-cycle carbon to alanine. This study demonstrates that the CO2-ratios method is applicable in the analysis of the metabolic properties of AS-30D cells. This methodology has verified that the atypical TCA-cycle metabolism previously described for AS-30D-cell mitochondria occurs in intact AS-30D rat hepatoma cells.  相似文献   

9.
During C4 photosynthesis, CO2 is released in bundle-sheath cells by decarboxylation of C4 acids and then refixed via ribulose-1,5-bisphosphate carboxylase. In this study we examined the efficiency of this process by determining the proportion of the released CO2 that diffuses back to mesophyll cells instead of being refixed. This leak of CO2 was assessed by determining the amount of 14CO2 released from leaves during a chase in high [12CO2] following a 70-s pulse in 14CO2. A computer-based analysis of the time-course curve for 14CO2 release indicated a first-order process and provided an estimate of the initial velocity of 14CO2 release from leaves. From this value and the net rate of photosynthesis determined from the 14CO2 fixed in the pulse, the CO2 leak rate from bundle-sheath cells (expressed as a percentage of the rate of CO2 production from C4 acids) could be deduced. For nine species of Gramineae representing the different subgroups of C4 plants and two NAD-malic enzyme-type dicotyledonous species, the CO2 leak ranged between 8 and 14%. However, very high CO2 leak rates (averaging about 27%) were recorded for two NADP-malic enzyme-type dicotyledonous species of Flaveria. The results are discussed in terms of the efficiency of C4 photosynthesis and observed quantum yields.  相似文献   

10.
The time course (0-60 min) of label incorporation from NaH14 CO3 into citric-acid-cycle intermediates and amino acids was investigated in incubations of isolated rat diaphragms. On the basis of these results, 14CO2 exchange by isocitrate dehydrogenase and 14CO2 fixation by propionyl-CoA carboxylation and pyruvate carboxylation could be estimated. Apparent rates amounted to about 30-40, 2, and 35 nmol/min per g of muscle, respectively. About 90 percent of C4-carbon compounds originating from 14CO2 fixation were subsequently removed by decarboxylation. 2-Cyano-4-hydroxycinnamate, an inhibitor of mitochondrial pyruvate transport, effectively reduced 14CO2 production from [1-14C]pyruvate but did not affect incorporation of radioactive label from NaH14CO3. In cell-free muscle extracts, 14CO2 fixation was demonstrable under assay conditions suitable for NADP -dependent 'malic' enzyme(s). Addition of hydroxymalonate, an inhibitor of the latter enzyme(s), significantly reduced 14CO2 incorporation. The results provide evidence for a continuous cytosolic replenishment and mitochondrial depletion of citric-acid-cycle carbon skeletons in resting skeletal muscle tissue. The functional role of malic (iso)enzyme activities in these processes is discussed.  相似文献   

11.
Methane-oxidizing activity in natural samples is typically measured by amending 14CH4 to the sample and then following the accumulation of 14CO2. Current biological techniques to synthesize 14CH4 yield significant quantities of 14CO that when oxidized to 14CO2 would artificially inflate the measured methane-oxidizing activity of a sample. We present here a new method to biologically produce highly-pure 14CH4 using Methanothrix sp. Strain CALS-1 which produces very little CO. Using this method, 14CH4 was produced at nearly 100% efficiency and at a high specific activity (2.2 GBq.mmol-1) equal to the parent compound, [2-14C] sodium acetate. Furthermore, only trace quantities of H2 and CO were produced with only one molecule of CO produced for every 17,000 molecules of CH4. When compared to the standard CH4 generation method, this technique produced 97% purer CH4.  相似文献   

12.
Adrenaline, noradrenaline, vasopressin and angiotensin increased 14CO2 production from [1-14C]oleate by hepatocytes from fed rats but not by hepatocytes from starved rats. The hormones did not increase 14CO2 production when hepatocytes from fed rats were depleted of glycogen in vitro. Increased 14CO2 production from ]1-14C]oleate in response to the hormones was observed when hepatocytes from starved rats were incubated with 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase. 3-Mercaptopicolinate inhibited uptake and esterification of [1-14C]oleate, slightly increased 14CO2 production from [1-14C]oleate and greatly increased the [3-hydroxybutyrate]/[acetoacetate] ratio. In the presence of 3-mercaptopicolinate 14CO2 production in response to the catecholamines was blocked by the alpha-antagonist phentolamine and required extracellular Ca2+. The effects of vasopressin and angiotensin were also Ca2+-dependent. The actions of the hormones of 14CO2 production from [I-14C]oleate by hepatocytes from starved rats in the presence of 3-mercaptopicolinate thus have the characteristics of the response to the hormones found with hepatocytes from fed rats incubated without 3-mercaptopicolinate. The stimulatory effects of the hormones on 14CO2 production from [1-14C]oleate were not the result of decreased esterification (as the hormones increased esterification) or increased beta-oxidation. It is suggested that the effect of the hormones to increase 14CO2 production from [1-14C]oleate are mediated by CA2+-activation of NAD+-linked isocitrate dehydrogenase, the 2-oxoglutarate dehydrogenase complex, and/or electron transport. The results also demonstrate that when the supply of oxaloacetate is limited it is utilized for gluconeogenesis rather than to maintain tricarboxylic acid-cycle flux.  相似文献   

13.
The biotin-containing oxaloacetate decarboxylase from Klebsiella aerogenes catalyzed the Na+-dependent decarboxylation of oxaloacetate to pyruvate and bicarbonate (or CO2) but not the reversal of this reaction, not even in the presence of an oxaloacetate trapping system. The enzyme catalyzed an avidin-sensitive isotopic exchange between [1-14C]pyruvate and oxaloacetate, which indicated the intermediate formation of a carboxybiotin enzyme. Sodium ions were not required for this partial reaction, but promoted the second partial reaction, the decarboxylation of the carboxybiotin enzyme, thus accounting for the Na+ requirement of the overall reaction. Therefore, the 14CO2-enzyme which was formed upon incubation of the decarboxylase with [4-15C]oxaloacetate, could only be isolated if Na+ ions were excluded. Preincubation of the decarboxylase with avidin also prevented its labelling with 14CO2. The isolated 14CO2-labelled oxaloacetate decarboxylase revealed the following properties. It was slowly decarboxylated at neutral pH and rapidly upon acidification. The 14CO2 residues of the 14CO2-enzyme could be transferred to pyruvate yielding [4-14C]oxaloacetate. In the presence of Na+ this 14CO2 transfer was repressed by the simultaneous decarboxylation of the 14CO2-enzyme. However, Na+ alone was insufficient as a cofactor for the decarboxylation of the isolated 14CO2-enzyme, since this required pyruvate in addition to Na+. It is therefore concluded that the decarboxylation of oxaloacetate proceeds over a CO2-enzyme--pyruvate complex and that free CO2-enzyme is an abortive reaction intermediate. The activation energy of the enzymic decarboxylation of oxaloacetate changed with temperature and was about 113 kJ below 11 degrees C, 60 kJ between 11 degrees C and 31 degrees C and 36 kJ between 31--45 degrees C.  相似文献   

14.
R Kumar  D Harnden  H F DeLuca 《Biochemistry》1976,15(11):2420-2423
Approximately 7% of a 650-pmol dose of 25-hydroxyl[26,27-14C]vitamin D3 and 25% of a 325-pmol dose of 1,25-dihydroxyl[26,27-14C]vitamin D3 are metabolized to 14CO2 by vitamin D deficient rats. Nephrectomy prevents the metabolism of 25-hydroxy[26,27-14C]vitamin D3 to 14CO2 but not that of 1,25-dihydroxy[26,27-14C]vitamin D3. Less than 5% of the 14C from 24,25-dihydroxy[26,27-14C]vitamin D3 is metabolized to 14CO2. Feeding diets high in calcium and supplemented with vitamin D3 markedly diminishes the amount of 14CO2 formed from 25-hydroxy[26,27-14C]vitamin D3 but not that from 1,25-dihydroxyl[26,27-14C]vitamin D3. These results provide strong evidence that only 1-hydroxylated vitamin D compounds and especially 1,25-dihydroxyvitamin D3 undergo side-chain oxidation and cleavage to yield an unknown metabolite and CO2.  相似文献   

15.
Pulmonary carbonic anhydrase (CA) activity was studied in rabbit lungs perfused with solutions containing no CA. Measurements were made of the amount of 14CO2 appearing in the expired gas following injections of H14CO3(-), 14CO2, or a 20:1 mixture of each into the pulmonary artery. The fraction of the injected label in the expired gas was only 17% greater for 14CO2 than for the mixture, suggesting that equilibration between H14CO3(-) and 14CO2 was nearly complete during the capillary transit time. Inhibition of pulmonary CA decreased excretion of H14CO3(-) and the mixture by 40 and 49% and increased the excretion of 14CO2 by 96%. Addition of CA to the perfusate had no effect. Thus, CO2 exchange is not significantly limited by pulmonary CA if inhibitors are absent. Tissue binding of [3H]acetazolamide injected into the pulmonary artery was diminished by 50% when acetazolamide concentrations reached 0.13 x 10(-6) M. Each liter of extravascular lung water contained 1.25 x 10(-6) mol of receptors for acetazolamide that were accessible to plasma during a single circulation. Binding of [3H]acetazolamide was also observed in lungs of anesthetized rabbits, suggesting that pulmonary CA is accessible to plasma in vivo as well as in situ.  相似文献   

16.
With physiological portal HCO3- and CO2 concentrations of 25mM and 1.2mM in the perfusate, respectively, acetazolamide inhibited urea synthesis from NH4Cl in isolated perfused rat liver by 50-60%, whereas urea synthesis from glutamine was inhibited by only 10-15%. A decreased sensitivity of urea synthesis from glutamine to acetazolamide inhibition was also observed when the extracellular HCO3- and CO2 concentrations were varied from 0-50mM and 0-2.4mM, respectively. Stimulation of intramitochondrial CO2 formation at pyruvate dehydrogenase with high pyruvate concentrations (7mM) was without effect on the acetazolamide sensitivity of urea synthesis from NH4Cl. Urea synthesis was studied under conditions of a limiting HCO3- supply for carbamoyl-phosphate synthesis. In the absence of externally added HCO3- or CO2, when 14CO2 was provided intracellularly by [U-14C]glutamine or [1-14C]-glutamine oxidation, acetazolamide had almost no effect on label incorporation into urea, whereas label incorporation from an added tracer H14CO3- dose was inhibited by about 70%. 14CO2 production from [U-14C]glutamine was about twice as high as from [1-14C]glutamine, indicating that about 50% of the CO2 produced from glutamine is formed at 2-oxoglutarate dehydrogenase. The fractional incorporation of 14CO2 into urea was about 13% with [1-14C]-as well as with [U-14C]glutamine. Addition of small concentrations of HCO3- (1.2mM) to the perfusate increased urea synthesis from glutamine by about 70%. This stimulation of urea synthesis was fully abolished by acetazolamide. The carbonate-dehydratase inhibitor prevented the incorporation of added HCO3- into urea, whereas incorporation of CO2 derived from glutamine degradation was unaffected. Without HCO3- and CO2 in the perfusion medium, when 14CO2 was provided by [1-14C]-pyruvate oxidation, acetazolamide inhibited urea synthesis from NH4Cl as well as 14C incorporation into urea by about 50%. Therefore carbonate-dehydratase activity is required for the utilization of extracellular CO2 or pyruvate-dehydrogenase-derived CO2 for urea synthesis, but not for CO2 derived from glutamine oxidation. This is further evidence for a special role of glutamine as substrate for urea synthesis.  相似文献   

17.
Formation of Hydrogen and Formate by Ruminococcus albus   总被引:9,自引:2,他引:7       下载免费PDF全文
Radioisotopic growth studies with specifically labeled (14)C-glucose confirmed that Ruminococcus albus, strain 7, ferments glucose mainly by the Embden-Myerhof-Parnas pathway to acetate, ethanol, formate, CO(2), H(2), and an unidentified product. Cell suspensions and extracts converted pyruvate to acetate, H(2), CO(2), and a small amount of ethanol. Formate was not produced from pyruvate and was not degraded to H(2) and CO(2), indicating that formate was not an intermediate in the production of H(2) and CO(2) from pyruvate. Cell extract and (14)C-glucose growth studies showed that the H(2)-producing pyruvate lyase reaction is the major route of H(2) and CO(2) production. An active pyruvate-(14)CO(2) exchange reaction was demonstrable with cell extracts. The (14)C-glucose growth studies indicated that formate, as well as CO(2), arises from the 3 and 4 carbon positions of glucose. A formate-producing pyruvate lyase system was not demonstrable either by pyruvate-(14)C-formate exchange or by net formate formation from pyruvate. Growth studies with unlabeled glucose and labeled (14)CO(2) or (14)C-formate suggest that formate arises from the 3 and 4 carbon positions of glucose by an irreversible reduction of CO(2). The results of the studies on the time course of formate production showed that formate production is a late function of growth, and the rate of production, as well as the total amount produced, increases as the glucose concentration available to the organism increases.  相似文献   

18.
The concentration of potassium in the extracellular fluid has been found to stimulate the rate of CO2 fixation by astroglial cells grown in primary culture. Raising the concentration of extracellular potassium increased both the initial rate of formation of the 14C-labeled products of 14CO2 fixation and the final steady-state level of these products within the cells. In contrast, neither veratridine nor L-glutamate affected the rate of CO2 fixation in astroglial cells. The very low rate of CO2 fixation found in primarily neuronal cultures was unaffected by increased extracellular potassium as was CO2 fixation in fibroblasts. When cultured alone, astroglial cells release a large fraction of the 14C-labeled products of CO2 fixation into the surrounding medium. Mixed cultures of astroglia and neurons also fix CO2 but, in contrast to astroglia cultured alone, release only a small fraction of the 14C-labeled products into the culture medium.  相似文献   

19.
Prediction of the impact of climate change requires the response of carbon (C) flow in plant-soil systems to increased CO(2) to be understood. A mechanism by which grassland C sequestration might be altered was investigated by pulse-labelling Lolium perenne swards, which had been subject to CO(2) enrichment and two levels of nitrogen (N) fertilization for 10 yr, with (14)CO(2). Over a 6-d period 40-80% of the (14)C pulse was exported from mature leaves, 1-2% remained in roots, 2-7% was lost as below-ground respiration, 0.1% was recovered in soil solution, and 0.2-1.5% in soil. Swards under elevated CO(2) with the lower N supply fixed more (14)C than swards grown in ambient CO(2), exported more fixed (14)C below ground and respired less than their high-N counterparts. Sward cutting reduced root (14)C, but plants in elevated CO(2) still retained 80% more (14)C below ground than those in ambient CO(2). The potential for below-ground C sequestration in grasslands is enhanced under elevated CO(2), but any increase is likely to be small and dependent upon grassland management.  相似文献   

20.
Several forms of carbonic anhydrase (CA) have been detected in hepatocytes. The distribution of these enzymes appears to be heterogeneous in the hepatic lobule, and the specific isoenzyme that predominates is influenced by sex steroid levels in the animal. In the present study, experiments were conducted in isolated male rat livers perfused with erythrocyte-free solutions, which were devoid of CA to see if there were sufficient tissue CA activity accessible to the plasma to ensure equilibration between labeled HCO3- and CO2 during a single passage from the portal vein to the hepatic vein. After injection of H14CO3- into the portal vein, emergence of the 14C label from the hepatic vein was slightly more rapid than after injections of 14CO2. After infusion of 5-250 microM of acetazolamide, an inhibitor of CA, H14CO3- was virtually confined to the extracellular space during a single transit through the organ, whereas the outflow of 14CO2 was very prolonged, suggesting that some of the 14C had been "trapped" within the hepatic cells as H14CO3-. Inhibition of CA activity in the intact organ with low doses of acetazolamide suggests the presence of a readily inhibitable isoenzyme of CA on the surface of the hepatocytes, which is directly accessible to both HCO3- and acetazolamide. The outflow patterns of 14CO2 and H14CO3- became the same after infusion of erythrocyte CA into the portal vein. On the basis of the pH of the perfusate and the cellular distribution of 14CO2 and H14CO3- in the presence of CA, an intracellular pH value of 7.26 was calculated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号