首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In studies from several laboratories evidence has been adduced that renal Type I (mineralocorticoid) receptors and hippocampal "corticosterone-preferring" high affinity glucocorticoid receptors have similar high affinity for both aldosterone and corticosterone. In all these studies the evidence for renal mineralocorticoid receptors is indirect, inasmuch as the high concentrations of transcortin (CBG) in renal cytosol make studies with [3H]corticosterone as a probe difficult to interpret, given its high affinity for CBG. We here report direct binding studies, with [3H]aldosterone and [3H]corticosterone as probes, on hippocampal and renal cytosols from adrenalectomized rats, in which tracer was excluded from Type II dexamethasone binding glucocorticoid receptors with excess RU26988, and from CBG by excess cortisol 17 beta acid. In addition, we have compared the binding of [3H]aldosterone and [3H]corticosterone in renal cytosols from 10-day old rats, in which CBG levels in plasma and kidney are extremely low. Under conditions where neither tracer binds to type II sites or CBG, they label an equal number of sites (kidney 30-50 fmol/mg protein, hippocampus approximately 200 fmol/mg protein) with equal, high affinity (Kd 4 degrees C 0.3-0.5 nM). Thus direct tracer binding studies support the identity of renal Type I mineralocorticoid receptors and hippocampal Type I (high affinity, corticosterone preferring) glucocorticoid receptors.  相似文献   

2.
It has long been debated whether binder IB represents a unique form of the glucocorticoid receptor or is derived from the larger molecular weight form, binder II, by limited proteolysis. Transformed glucocorticoid receptors in kidney, liver and mixed kidney/liver cytosols were examined using anion exchange and gel filtration chromatography. The transformed receptor in liver cytosols chromatographs as binder II on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of approx 6.0 nm. The transformed receptor in kidney cytosols chromatographs as binder IB on DEAE-Sephadex A-50 anion exchange columns and has a Stokes radius of 3.0-4.0 nm (3.2 nm on agarose; 3.0-4.0 nm on Sephadex G-100). Using cytosols prepared from mixed homogenates (2 g kidney plus 8 g liver tissue), our experiments show that binder II is converted to a lower molecular weight form (Rs = 3.2 nm on agarose; Rx = 3.9 nm on Sephadex G-100) that is identical to binder IB in its elution position from DEAE-Sephadex anion exchange resin. Identical results are obtained using kidney/liver/cytosols mixed in vitro in which only the hepatic receptor, binder II, is labelled with [3H]TA. These results support the hypothesis that the renal receptor, binder IB, is a proteolytic fragment of binder II and does not represent a polymorphic form of the glucocorticoid receptor. The renal converting activity is dependent on free-SH for full activity but is insensitive to the protease inhibitors leupeptin, antipain, and PMSF. The conversion of hepatic binder II to binder IB in in vitro mixing experiments can be prevented if kidney cytosol is gel filtered on Sephadex G-25 and the eluted macromolecular fraction is adjusted to 10 mM EGTA (or EDTA) prior to mixing with the [3H]TA labelled hepatic cytosol.  相似文献   

3.
Previous gel filtration binding assay studies indicated that rat vascular smooth muscle cells contained corticoid receptor I and corticoid receptor II sites which could be distinguished on the basis of their relative affinities for aldosterone and dexamethasone. Ion-exchange chromatography experiments were designed to separate the two sites for further studies on their physical characteristics and role in vascular smooth muscle cell physiology. Cultured aortic cells were incubated with 5-10 nM 3H steroid alone or in the presence of 10-fold non-radioactive steroid competitor for 30 min at 37 degrees C. Following cell lysis, total cellular protein-bound steroid was isolated using Sephadex G-25 and applied to a DEAE-cellulose ion-exchange column. Three peaks of radioactivity were eluted using a 1-200 mM sodium phosphate gradient: peak I (30-38 mM), peak II (52-64 mM), and peak III (92-102 mM). Peaks I and II contained 60% of the eluted radioactivity and exhibited the same steroid specificity as corticoid receptor II sites (dexamethasone greater than aldosterone). Peak III contained 40% of the eluted radioactivity and exhibited the same steroid specificity as corticoid receptor I sites (aldosterone greater than dexamethasone). These studies support the binding assay data on steroid specificity and relative proportion of type I and II sites. They also document the existence of type I and II corticoid receptors with different physicochemical characteristics in rat aortic smooth muscle cells.  相似文献   

4.
Recently we reported that adding molybdate to crude steroid-free cytosol at 0°C results in a dose-dependent reduction in the binding of [3H]aldosterone ([3H]ALDO), to Type I adrenocorticosteroid receptors. In the experiments outlined here, we found that addition of molybdate to steroid-free brain cytosol produces a 30–50% increase in the subsequently measured maximal specific binding capacity (B MAX) of [3H]ALDO-Type I receptors if the cytosol is subjected to Sephadex G-25 gel filtration prior to steroid addition. These manipulations were found to have no effect on the equilibrium dissociation constant (K d) of the receptors. In contrast, when gel filtration of steroid-free cytosol was performed in the absence of molybdate, there was a 2-fold increase in the Kd and over a 50% reduction in the subsequently measuredB MAX of [3H]ALDO-Type I receptors. When molybdate was added to this steroid-free cytosol immediately following gel filtration, there was no reduction (or increase) in Type I receptor [3H]ALDO binding capacity compared with nongel-filtered controls. The addition of as little as 2 mM molybdate to crude steroid-free cytosol was found to stabilize the binding capacity of Type I receptors during exposure to 22°C incubations; however, when gel-filtered steroid-free cytosol was exposed to these conditions at least 10 mM molybdate was required to stabilize Type I receptor binding capacity. Adding the sulfhydryl reducing reagent, dithiothreitol, to the various steroid-free cytosols had little effect on [3H]ALDO-Type I receptor binding. The effects of molybdate, revealed in this study, on Type I receptors in brain cytosol subjected to gel filtration are clearly different from those seen with receptors in crude cytosol preparations, as well as from those reported in the literature for other steroid receptors. Possible mechanisms of action of molybdate on unoccupied Type I receptors in crude and gel-filtered cytosol are discussed.  相似文献   

5.
[3H]Aldosterone binds with high affinity to Type I corticosteroid receptors in cytosols from adrenalectomized rat forebrains. Physicochemical parameters of these receptors were determined in the presence of molybdate, which stabilized receptors and maintained them in a presumably untransformed state. The Stokes' radius of the molybdate-stabilized receptor was 8.1 nm, as determined by gel filtration on Sephacryl S-300. Its sedimentation coefficient was 9.1S in linear sucrose density gradients. The receptor is asymmetric, with an axial ratio of 8-10 and an apparent mol. wt of 303,000 dalton. The [3H]aldosterone-receptor complex is anionic and elutes from DEAE-Trisacryl in a single peak with a maximum at 160 mM KCl. Exposure to heat or salt in the absence of molybdate, conditions which transform other steroid receptors to smaller DNA-binding forms, causes marked instability of the [3H]aldosterone-receptor complex. The [3H]aldosterone-binding protein of rat forebrain, which displays the binding characteristics of a renal Type I (mineralocorticoid) receptor, is similar in size, shape and charge to the molybdate-stabilized oligomeric forms of other steroid hormone receptors.  相似文献   

6.
Studies outlined here compare the properties of mineralocorticoid (Type I) and glucocorticoid (Type II) receptors in cytosol from adrenalectomized mouse brain. Pretreating cytosol with dextran-coated charcoal (DCC) produced a 4.7-fold increase in the subsequent macromolecular binding of the mineralocorticoid, [3H]aldosterone (20 nM ALDO, in the presence of a 50-fold molar excess of the highly specific synthetic glucocorticoid, RU 26988), whereas it produced a 55% decrease in the binding of the glucocorticoid, [3H]triamcinolone acetonide (20 nM TA). Scatchard analyses revealed that DCC pretreatment had no effect on the affinity or maximal binding of Type I receptors for [3H]ALDO (in the presence of a 0-, 50- or 500-fold excess of RU 26988), whereas it produced a 3- to 6-fold increase in the Kd, and an 8-43% decrease in the maximal binding, of Type II receptors for [3H]TA and [3H]dexamethasone. Optimal stability of unoccupied Type I receptors at 0 degree C was found to be achieved in buffers containing glycerol, but lacking molybdate. Although the addition of molybdate was found to reduce the loss in Type I receptor binding observed after incubating unlabelled cytosol at 12 or 22 degrees C, this stabilization was accompanied by a concentration-dependent reduction in the binding of [3H]ALDO at 0 degree C. Scatchard analyses showed that this reduction was due to a shift in the maximal binding, and not the affinity, of the Type I receptors for [3H]ALDO. The presence or absence of dithiothreitol in cytosol appeared to have little effect on the stability of Type I receptors. In contrast to our finding for Type I receptors, it was possible to stabilize the binding capacity of unoccupied Type II receptors, even after 2-4 h at 12 or 22 degrees C, if the glycerol containing buffers were supplemented with both molybdate and dithiothreitol. In summary, these results indicate distinct chemical differences between Type I and Type II receptors for adrenal steroids.  相似文献   

7.
In order to study the receptor system for adrenocortical steroids, hippocampal cytosolic preparations--containing both type I and type II receptors--were subjected to anion exchange fast protein liquid chromatography (FPLC). With running buffer containing Tris, EDTA, and glycerol three peaks (1-3) were eluted from the column at 220, 400 and 560 mM NaCl respectively regardless of whether [3H]corticosterone or [3H]RU 28362 had been used as radiotracer. None of the peaks was caused by serum transcortin as revealed by control studies. However, the sequestering influence of transcortin on receptor binding of corticosterone could be demonstrated by the FPLC technique with mixtures containing serum and hippocampus cytosol. Competition experiments with cytosolic samples revealed that type I receptor was present only in peaks 2 and 3 while type II was found in all three peaks in variable amounts, depending on the presence of molybdate. When molybdate was added to the running buffer only two peaks (2 and 3) were eluted, both containing type I and type II receptors. Peak 1 was attributed to the activated type II receptor while peak 2 represented nonactivated receptors. The origin of peak 3 remains uncertain. The data indicate that molybdate must be present in the cytosolic preparation and in the running buffer to keep type II receptor in its nonactivated form. Type I receptor was probably not transformed into the activated form in the absence of molybdate but lost binding capacity and/or affinity for corticosterone.  相似文献   

8.
9.
These studies represent the first biochemical characterization and purification of nuclear type II binding sites from the rat uterus. Uterine nuclei from estradiol-implanted rats were digested with DNA'se and RNA'se, washed with Na deoxycholate-Tween 40 and extracted with 0.4 M ammonium sulfate (AmSO4). Nuclear type II sites in the AmSO4 extract eluted as a single peak during DEAE ion exchange chromatography, HPLC (Waters DEAE 5PW column) and Sephadex G-100 chromatography with a molecular weight of approximately 37K. DEAE and quercetin-sepharose affinity chromatography resulted in significant purification (greater than 800-fold) of nuclear type II sites with a 49% yield. Type II sites were not recognized by rat ER antibodies (Abbot ER-EIA kit) which immunoadsorbed ER from these preparations. These biochemical and immunological studies suggest that the ER and type II sites are likely to be different proteins.  相似文献   

10.
Molybdate-stabilized, unactivated rat hepatic glucocorticoid-receptor complexes were purified by a three-step procedure which includes affinity chromatography, gel filtration and anion exchange chromatography. Following elution of unactivated steroid-receptor complexes from the final DEAE-cellulose column, RNA which remained bound to the anion exchange resin was eluted with 1 M KCl. This RNA was small and heterogeneous in size. Equivalent amounts of RNA were detected after a mock purification which was devoid of receptors, suggesting that the presence of this RNA is not dependent on that of receptors. Both a [32P]DNA complementary to the RNA eluted from DEAE-cellulose and a [32P]DNA probe synthesized from total rat liver RNA gave similar results when hybridized to total rat liver RNA. These data indicated that the RNA which co-purified with unactivated receptors through the first two steps was very similar to total RNA in overall composition. Virtually identical hybridization patterns were also detected when end-labeled probes generated from the DEAE-cellulose eluted RNA or total liver RNA were hybridized to total genomic rat DNA, suggesting that the RNA eluted from the anion exchange resin is not specific or unique. Although these results do not exclude the possibility that there could be specific RNA species associated with the unactivated glucocorticoid receptor, they do indicate that the majority of the RNA eluted from DEAE-cellulose following elution of receptor complexes appears indistinguishable from total rat liver RNA and can be detected in parallel mock purifications.  相似文献   

11.
Some characteristics of estrogen sulfotransferases from guinea pig liver and chorion were compared. Liver cytosolic activity was stimulated 10-fold by 25 mM monothiolglycerol and 2-fold by 15 mM MgCl2 or CaCl2, similar to that found previously for chorion. Liver and chorion activities were each eluted as a single peak from fast protein liquid chromatography (FPLC) gel filtration columns at apparent molecular weights of 52,300 and 50,000, respectively. Each was eluted during FPLC anion exchange under single, wide peaks with low recoveries. Liver sulfotransferase activity was eluted from Affi-gel Blue columns in the form of several peaks whereas the chorion activity behaved as a single species. The enzymes from both tissues, when partially purified by gel filtration followed by anion exchange, acted upon estrone and estradiol at the 3-position but activity toward dehydroepiandrosterone and testosterone was minimal or undetectable. Affi-gel Blue chromatography followed by FPLC gel filtration resulted in increases in specific activity of 26- and 90-fold for liver and chorion, respectively. Both enzymes were eluted from agarose-hexane-adenosine 3',5'-diphosphate (PAP-agarose) columns as single peaks. Average increases in specific activity for this column step were 40-fold and 96-fold for the entire eluted peaks of liver and chorion enzyme, respectively. Individual fractions from the PAP-agarose column indicated a specific activity increase of as much as 60-fold for liver and 208-fold for chorion. These latter were markedly unstable and it was not possible to obtain further purification by additional steps. Velocity versus substrate concentration curves for the partially purified enzymes showed complex kinetics, particularly with estradiol as substrate.  相似文献   

12.
Previous studies have indicated the existence of separate binding sites of ubiquitin-protein ligase, E3, specific for basic (Type I) or bulky hydrophobic (Type II) NH2-terminal amino acid residues of proteins. Another class (Type III) of protein substrates appeared to interact with E3 at regions other than the NH2 terminus (Reiss, Y., Kaim, D., and Hershko, A. (1988) J. Biol. Chem. 263, 2693-2698). In the present study we have used affinity chromatography on immobilized protein substrates to examine the question of whether the different binding sites belong to one E3 enzyme, or to different E3 species. Another objective was to develop a procedure for the extensive purification of E3. When a crude extract of reticulocytes is applied to Type I or Type II protein substrates linked to Sepharose, E3 becomes strongly bound to the affinity columns and is not eluted with salt at high concentration. However, the enzyme can be specifically eluted by a dipeptide that has an NH2-terminal residue similar to that of matrix-bound protein substrate. A 350-fold purification is obtained in this single step. Preparations of E3 purified on either Type I or Type II protein substrate affinity columns act on both types of protein substrates, indicating that the separate binding sites for basic and hydrophobic NH2-terminal residues belong to one enzyme. Another species of E3 that acts strongly on some Type III protein substrates does not bind to Type I or Type II protein substrate affinity columns.  相似文献   

13.
Coagulation factor VIII (FVIII) concentrates are used in the treatment of patients with Hemophilia A. Human FVIII was purified directly from plasma using anion exchange chromatography followed by gel filtration. Three Q-Sepharose resins were tested, resulting in 40% recovery of FVIII activity using Q-Sepharose XL resin, about 80% using Q-Sepharose Fast Flow and 70% using the Q-Sepharose Big Beads. The vitamin K-dependent coagulation factors co-eluted with FVIII from the anion exchange columns. In the second step of purification, when Sepharose 6FF was used, 70% of FVIII activity was recovered free from vitamin K-dependent factors.  相似文献   

14.
A 400-kDa transforming growth factor beta (TGF-beta) receptor was purified from plasma membranes of bovine liver using Triton X-100 extraction, wheat germ lectin-Sepharose 4B affinity chromatography, DEAE-cellulose anion exchange chromatography, and Sepharose CL-4B gel filtration chromatography. This procedure yielded approximately 20 micrograms of the receptor from 1 kg of bovine liver. During purification, the 400-kDa TGF-beta receptor was detected by a cross-linking assay in which the TGF-beta receptor-125I-TGF-beta complex was cross-linked by disuccinimidyl suberate, a bifunctional reagent, and analyzed by 5.5% sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by autoradiography. This novel 400-kDa TGF-beta receptor was also identified on cultured cells including cells reported to lack the type III receptor. The 400-kDa TGF-beta receptor, a nonproteoglycan glycoprotein, appears to be distinct from TGF-beta receptors (types I, II, III, and IV) previously identified on cultured cells and is designated as the type V receptor. The 400-kDa TGF-beta receptor as well as type I, II, and III receptors underwent internalization upon 125I-TGF-beta binding in mink lung epithelial cells.  相似文献   

15.
W G Luttge  M E Rupp 《Steroids》1989,53(1-2):59-76
Adult female mice were adrenalectomized and ovariectomized and the concentration of Type I and Type II receptors in whole brain, kidney, and liver cytosol determined at various time thereafter by incubation with [3H]aldosterone (+ RU 26988 to prevent binding to Type II receptors) or [3H]dexamethasone, respectively. Type I receptor binding in brain was found to undergo a dramatic biphasic up-regulation, with levels six times that of intact levels by 24 h post-surgery and a doubling again by 4-8 days post-surgery. By 16 days, however, Type I specific binding had returned to intact levels. Similar, but less dramatic fluctuations were seen in kidney and liver, whereas much smaller fluctuations were seen for Type II receptors in all three tissues. In a follow-up study with Scatchard analyses we observed a similar transient up- and down-regulation in maximal binding for Type I, and to a lesser extent Type II receptors in all three tissues. As expected, the apparent binding affinity for both receptors increased after surgical removal of competing endogenous steroids. Radioimmunoassays revealed that plasma concentrations of corticosterone were reduced to near undetectable levels by 24 h post-surgery. A direct comparison of male and female mice revealed no sex-related differences in Type I receptor binding capacity fluctuations in brain cytosol after adrenalectomy-gonadectomy. Lastly, treatment with exogenous aldosterone or corticosterone was found to prevent adrenalectomy-gonadectomy-induced up-regulation of Type I and, to a lesser extent, Type II receptors in brain. Somewhat surprisingly, the potency of these two adrenocorticosteroids appeared to be very similar for both receptor types.  相似文献   

16.
We have used 32P-labeled cRNA probes directed against Type I (mineralocorticoid, high affinity glucocorticoid) and Type II (classical glucocorticoid) receptor mRNA to screen various tissues, and have investigated the effect of adrenalectomy (ADX) and dexamethasone (DM) administration on their levels in hippocampus. Both Northern blot and S1 nuclease analysis showed Type I mRNA to be high in hippocampus, colon, and heart; low in liver; and undetectable in thymus. Type II mRNA was high in liver, thymus, and brain; and low in testis and parotid. A transient increase in both hippocampal Type I and Type II mRNA was noted at 1-3 days post ADX. DM similarly elicited a rise in hippocampal Type I mRNA at 2-4 days after ADX, but prevented the ADX-induced increment in Type II mRNA. In contrast to the transient increase in Type I receptor mRNA levels, hippocampal levels of Type I receptors measured by [3H]aldosterone binding were constant 1-16 days post ADX. DM administration caused a doubling in Type I receptor levels over 4 days, with plateau levels at 4-16 days; previously, DM has been shown to lower Type II receptor levels in the hippocampus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Androgen, estrogen and progesterone receptors have been characterized with anion exchange Fast Protein Liquid Chromatography (FPLC) on a Mono Q column (Pharmacia). In the presence of sodium molybdate androgen receptors in cytosols from rat prostate, rat epididymis and calf uterus eluted as a single sharp peak at 0.32 M NaCl with recoveries of approx 90%. The molybdate-stabilized form of the androgen receptor from rat prostate was purified about 75-fold. The receptor containing FPLC-peak fractions sedimented in high salt (0.4 M KCl) linear sucrose gradients at 3.6 S (prostate) and at 4.6 S (epididymis and calf uterus) respectively. Multiple forms of the androgen receptor were present in cytosols from rat prostate prepared in the absence of sodium molybdate, probably due to proteolytic breakdown of the native form. Calf uterine estradiol and progesterone receptors prepared in the presence of sodium molybdate (20 mM) eluted from the Mono Q column at 0.32 M NaCl. The molybdate-stabilized forms of the oestradiol and progesterone receptors were purified approx 70-fold and 30-fold respectively. In the absence of molybdate the estradiol receptor dissociated into two major forms eluting at 0.23 M NaCl and 0.37 M NaCl. After heat induced transformation (30 min at 25 degrees C) of the estradiol receptor one major peak was eluted at 0.42 M NaCl, indicating a change in the surface charge of the estradiol receptor as a result of the 4 S to 5 S transformation. It is concluded that the FPLC anion exchange system is a powerful, fast tool for characterization and partial purification of steroid receptors. In addition this technique could be applied as a rapid procedure for the quantitative estimation of steroid receptors in small biological samples.  相似文献   

18.
The binding of [3H]corticosterone and [3H]dexamethasone to soluble macromolecules in cytosol of the hippocampal region of the brain has been studied in adrenalectomized male rats. Unlabeled dexamethasone appears to be a less effective competitor than corticosterone in the binding of [3H]corticosterone, while both unlabeled steroids compete equally well for the binding or [3H]dexamethasone. Further investigation of macromolecular complexes with [3H]dexamethasone and [3H]corticosterone revealed that they differ from each other in their behavior during ammonium sulfate precipitation, BioRad A-5M gel permeation chromatography, DE-52 anion exchange chromatography and DNA-cellulose chromatography. (1) After exposure to a 33% ammonium sulfate solution relatively more [3H]dexamethasone complex than [3H]corticosterone complex is precipitated. (2) Treatment of the cytosol with 0.3 M KCl gives disaggregation of the supramolecular 3H-labeled corticoid complexes which are seen eluting with the void volume during gel permeation chromatography on Biorad A-5M at low ionic strength. In 0.3 M KCl, the [3H]dexamethasone complex has an elution volume somewhat smaller than that of bovine serum albumin, while the [3H]-corticosterone complex in 0.3 M KCl is too unstable to survive chromatography with A-5M. (3) Chromatography on DE-52 resolved the 3H-labeled corticoid complexes into three binding components. The complex with [3H]dexamethasone contains a higher percentage (85%) of a component less firmly attached (i.e. eluted by 0.15 M KCl) to the anion exchange resin than is observed for the complex with [3H]corticosterone (49%). (4) The complexes with 3H-labeled corticoids display an enhanced affinity for calf thymus DNA adsorbed to cellulose following "activation", warming to 25 degrees C for 15 min. Concurrently, a fraction of the [3H]dexamethasone complex becomes able to more firmly attach to the DE-52 anion exchange resin. These results with the binding of the cytosol hormone-receptor complexes to DNA-cellulose do not explain the marked in vivo preference of hippocampus for the cell nuclear uptake of [3H] corticosterone. However, the other differences in the properties of the complexes formed with the two labeled glucocorticoids support our previous inference that there may be more than one population of adrenal steroid "receptors" in brain tissue.  相似文献   

19.
We have used three experimental protocols to determine binding parameters for type I and type II glucocorticoid receptors in the spinal cord and hippocampus (HIPPO) from adrenalectomized rats. In protocol A, 0.5-20 nM [3H]dexamethasone (DEX) was incubated plus or minus a 1000-fold excess of unlabeled DEX, assuming binding to a two-site model. In protocol B, [3H]DEX competed with a single concentration of RU 28362 (500 nM), whereas in protocol C, we used a concentration of RU 28362 which varied in parallel to that of [3H]DEX, such as 500 x. Results of protocols A and C were qualitatively similar, in that: (1) Bmax for type I receptors favored the HIPPO, while the content of type II sites was comparable in the two tissues; (2) Kd was consistently lower for type I than for type II sites in both tissues; and (3) type II receptors from the spinal cord showed lower affinity than their homologous sites from HIPPO. This last result was also obtained when using protocol B. In contrast, protocol B yielded binding data indicating that type II sites were of similar or higher affinity than type I sites. Computer simulation of the binding protocols demonstrated that protocols A and C were the most theoretically reliable for estimating the Kd and Bmax of type I sites, and the predicted error was smaller for protocol C, in comparison with protocol B. We suggest that the noted differences in the Kd of type II receptors between the spinal cord and HIPPO could account for a difference in sensitivity of the two systems in the physiological adrenal hormone range.  相似文献   

20.
Hydrophobic interaction chromatography has been used to demonstrate an increase in the surface hydrophobicity of [3H]triamcinolone acetonide ([3H]TA)-labeled type II receptors in mouse brain cytosol following transformation of these receptor complexes to the activated DNA-binding form. After removing unbound [3H]TA and molybdate (which prevents activation) by gel filtration, [3H]TA-type II receptors were activated by incubation at 22 degrees C for 20 min. Gel filtration was then used to remove newly dissociated steroid and to readjust the molybdate and/or KCl concentration. Unactivated and activated receptors were then added to propyl, butyl, pentyl, hexyl, octyl, decyl, and dodecyl alkyl agarose, phenyl agarose, or unmodified agarose columns equilibrated and eluted with buffers of various molybdate and KCl concentrations and/or other additions, including glycerol, ethylene glycol, and urea. Under high-salt conditions, activated receptors were retained longer than unactivated receptors run on butyl, pentyl, hexyl, and phenyl agaroses. With the longer alkyl chain columns, essentially none of the [3H]TA was eluted in association with receptor macromolecules. Removal of the remaining steroid required receptor denaturation with urea. Under low-salt conditions, both receptor forms were retained more avidly on all alkyl agarose columns; however, on phenyl agarose only activated receptors displayed this increased retention. Further studies revealed that optimal separation and subsequent recovery of unactivated and activated [3H]TA-type II receptor complexes were achieved on pentyl agarose columns equilibrated and eluted with buffers containing 50 mM molybdate and 600-1,200 mM KCl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号