首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Key message

In mature black spruce, bud burst process is anticipated by soil warming, while delayed by foliar applications of nitrogen; however, the effects depend on growth conditions at the site.

Abstract

The observation of phenological events can be used as biological indicator of environmental changes, especially from the perspective of climate change. In boreal forests, the onset of the bud burst is a key factor in the length of the growing season. With current climate change, the major factors limiting the growth of boreal trees (i.e., temperature and nitrogen availability) are changing and studies on mature trees are limited. The aim of this study was to investigate the effects of soil warming and increased nitrogen (N) deposition on bud burst of mature black spruce [Picea mariana (Mill.) BSP]. From 2008 onwards, an experimental manipulation of these environmental growth conditions was conducted in two stands (BER and SIM) at different altitudes in the boreal forest of Quebec, Canada. An increase in soil temperature (H treatment) and a canopy application of artificial rain enriched with nitrogen (N treatment) were performed. Observations of bud phenology were made during May–July 2012 and 2013. In BER, H treatment caused an anticipation (estimated as 1–3 days); while N treatment, a delay (estimated as 1–2 days but only in 2012) in bud burst. No treatments effect was significant in SIM. It has been demonstrated that soil temperature and N availability can play an important role in affecting bud burst in black spruce but the effects of these environmental factors on growth are closely linked with site conditions.
  相似文献   

2.
Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (~5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3‐m‐diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ~5 °C above control ambient air temperature allowing for the testing of soil‐only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil‐only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil‐only vs. soil+air warming) can affect the rate of decomposition.  相似文献   

3.
Does climatic warming increase the risk of frost damage in northern trees?   总被引:6,自引:3,他引:3  
Abstract. The effect of climatic warming on the timing of bud burst and the subsequent risk of frost damage on trees in central Finland was assessed with the aid of a computer model, 73 years of temperature data and a climatic scenario corresponding to doubled level of atmospheric CO2. In general, climatic warming hastened bud burst, due to ontogenetic development during warm spells in autumn, winter and spring. During the years with the warmest winters in the scenario conditions: (a) bud burst took place during mid-winter; and (2) depending on the year, the trees were subsequently exposed to temperatures between −27 and −10°C. This finding suggests that the risk of frost damage to trees will be increased if the predicted climatic warming occurs. Because of the assumptions used in the model, the results are not conclusive, but they do point out the importance of further experimental studies on genetic and environmental regulation of timing of bud burst in trees.  相似文献   

4.
Fire severity is predicted to increase in boreal regions due to global warming. We hypothesized that these extreme events will alter regeneration patterns of black spruce (Picea mariana). To test this hypothesis, we monitored seed dispersal and seedling emergence, survival and growth for 6 years from 2005 to 2010 after the 2004 wildfire on Poker Flat, interior Alaska, using 96 1 × 1 m plots. A total of 1,300 seedlings of black spruce and three broad-leaved deciduous trees (Populus tremuloides, Betula papyrifera, and Salix spp.) were recorded. Black spruce seedlings colonized burned and unburned ground surfaces for the first 2 years after the wildfire and established on any topographical surface, while the broad-leaved trees emerged less in areas of lower elevation, slope gradient and canopy openness and only on burned surfaces. Vascular plant cover on the ground floor increased the seedling establishment of black spruce and broad-leaved trees, most likely because of seed-trap effects. Black spruce grew faster on burned surface than on unburned surfaces. However, broad-leaved trees grew faster than black spruce on burned surfaces. Black spruce regenerates even after severe wildfire when the microtopography restricts the colonization of broad-leaved trees. The regeneration trajectories are determined soon after wildfire by a combination of seed limitation for black spruce and habitat preference for broad-leaved trees.  相似文献   

5.
The timing of spring bud‐burst and leaf development in temperate, boreal and Arctic trees and shrubs fluctuates from year to year, depending on meteorological conditions. Over several generations, the sensitivity of bud‐burst to meteorological conditions is subject to selection pressure. The timing of spring bud‐burst is considered to be under opposing evolutionary pressures; earlier bud‐burst increases the available growing season (capacity adaptation) but later bud‐burst decreases the risk of frost damage to actively growing parts (survival adaptation). The optimum trade‐off between these two forms of adaptation may be considered an evolutionarily stable strategy that maximizes the long‐term ecological fitness of a phenotype under a given climate. Rapid changes in climate, as predicted for this century, are likely to exceed the rate at which trees and shrubs can adapt through evolution or migration. Therefore the response of spring phenology will depend not only on future climatic conditions but also on the limits imposed by adaptation to current and historical climate. Using a dataset of bud‐burst dates from twenty‐nine sites in Finland for downy birch (Betula pubescens Ehrh.), we parameterize a simple thermal time bud‐burst model in which the critical temperature threshold for bud‐burst is a function of recent historical climatic conditions and reflects a trade‐off between capacity and survival adaptation. We validate this approach with independent data from eight independent sites outside Finland, and use the parameterized model to predict the response of bud‐burst to future climate scenarios in north‐west Europe. Current strategies for budburst are predicted to be suboptimal for future climates, with bud‐burst generally occurring earlier than the optimal strategy. Nevertheless, exposure to frost risk is predicted to decrease slightly and the growing season is predicted to increase considerably across most of the region. However, in high‐altitude maritime regions exposure to frost risk following bud‐burst is predicted to increase.  相似文献   

6.
M. Kuusinen 《Ecography》1996,19(1):41-51
The epiphyte (lichens and bryophytes) species richness, diversity and composition on basal trunks of Picea abies in spruce swamp-forests were compared to adjacent mesic forests, on mineral soil in two southern and two middle boreal sites in old-growth forest patches in Finland The sampling was carried out along four line transects parallel to swamp-forest margin 1) in the spruce swamp-forest, 2) at the swamp-forest margin, 3) on mineral soil c 10-20 m off the swamp-forest margin and 4) on mineral soil at least 50 m off the swamp-forest margin In the two southern boreal sites there was a decreasing trend in the average species number per tree from the trees m swamp-forests (21-25 species) to the trees on mineral soil (17-18 species), whereas in the two more humid and virgin middle boreal sites a similar trend was not detected (25-28 species on all trees) There were no major differences in the epiphyte flora between the locations or study sites the dominant species occurred on nearly all sample trees The crustose lichens Cliostomum leprosum Arthoma leucopellaea and Lecanactis abietina were the most common species that were mainly confined to the swamp-forests m the southern boreal sites, C leprosum also in the middle boreal sites In addition, several rare species occurred exclusively on the swamp-forest trees Lecanactis abietina extended significantly higher on the swamp-forest trees than on the trees on mineral soil m the southern boreal sites The spruce swamp-forests proved to be one of the most important habitats for maintaining the epiphyte diversity in the boreal forest landscape  相似文献   

7.
The effects of soil temperature on the shoot phenology, carbohydrate dynamics, chlorophyll fluorescence and cold hardiness of 4-year-old Norway spruce seedlings ( Picea abies L. Karst.) were studied. The experiment was carried out under controlled conditions in the Joensuu dasotrons. Air conditions were similar but soil temperatures differed by treatments (9, 13, 18 and 21°C) during the second growing period in the dasotrons. The after-effects of the treatments were investigated during the third growing period following the treatments. Low soil temperature increased the starch content of needles and delayed the loss of starch at the end of the growing season. The photochemical efficiency ( F v/ F m) of the PSII of the current-year needles was reduced at the lowest soil temperature. The cold hardiness of needles correlated with the soluble sugar content. The differences in soil temperature had no effect on the timing of bud burst. No after-effects from the treatments were observed during the third growing period in the dasotrons.  相似文献   

8.
TOMPSETT  P. B. 《Annals of botany》1978,42(4):889-900
Vegetative shoots from the base of the crown, and from partsof the tree likely to form male or female buds, were collectedfrom 40–years–old trees of Picea sitchensis (Bong.)Carr. throughout the 1973–4 annual growth cycle. The morphologyand growth rates of the terminal buds on these shoots were assessed. Bud scale primordia were formed most quickly in the female position,at an intermediate rate in the male position and most slowlyin the basal vegetative position during April, May and June.In July and early August the apical meristems swelled to formdomes and continued to grow at the same relative rates in themale, female and basal vegetative positions. Reproductive budswere first morphologically distinct in late August and sporangiaappeared in October. Dormancy, defined by the pause in apicalvolume increase, extended from mid-October to mid–March.Young strobili grew much faster than basal vegetative shootsof the same age between mid–March and bud burst in lateApril. Throughout the growth cycle, external changes in budsize reflected changes in size of the apical meristem, youngstrobihis or young vegetative shoot inside the bud. It is proposed that the rate of growth of an apical meristemmay be causally related to the type of bud which subsequentlydevelops from it. Sitka spruce, Picea sitchensis, bud development, morphology, growth of apical dome, flowering  相似文献   

9.
The study was focused on changes of anatomical and histochemical parameters of buds of 4-year-old Norway spruce (Picea abies L. Karst) trees subjected to simulated acid rain (SAR). Solutions of pH 2.9 and 3.9 were applied by spraying on shoot and/or by watering for two years. No macroscopic changes of buds or needles were observed in connection with SAR application and the only induced change was 2-week earlier onset of bud break in all treated variants compared to the control. Two-year treatment caused decrease in number of leaf primordia and increase in number of living bud scales in treated dormant buds while these parameters remained unchanged in the control buds. Treatments with solution of pH 2.9 caused decrease of flatness of bud apical meristem during the vegetative season. Increased activity of non-specific esterase in treated buds occurred during dormancy and bud break and the enhanced accumulation of phenolic compounds was detected at the beginning of shoot growth. Changes in histochemical parameters of bud tissues were induced mainly by spraying of shoots and can thus be qualified as primary damage.  相似文献   

10.
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree‐ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree‐ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.  相似文献   

11.
Plant phenology is expected to be sensitive to climate warming. In boreal trees, spring flush is primarily temperature driven, whereas height growth cessation and autumn leaf senescence are predominantly controlled by photoperiod. Cuttings of 525 genotypes from the full range of balsam poplar were planted into two common gardens (Vancouver and Indian Head, Canada) at similar latitudes, but with differing winter temperatures and growing seasons. There was clinal variation in spring and, particularly, summer and fall phenology. Bud flush and, despite milder climate, bud set and leaf drop were earlier at Vancouver than at Indian Head by 44, 28 and 7 d, respectively. Although newly flushed growth is insensitive to photoperiod, many genotypes at both sites became competent before the summer solstice. At Vancouver, high‐latitude genotypes set dormant terminal buds in mid‐spring. Most other genotypes grew until midsummer or set bud temporarily and then experienced a second flush. In both gardens and in a growth chamber experiment, earlier bud set was associated with reduced height growth and higher root/shoot ratios. Shoots attained competency ~5 weeks after flushing, which would normally prevent dormancy induction before the solstice, but may be insufficient if spring advances by more than a few weeks.  相似文献   

12.
Loss of apical dominance is a well-known boron (B) deficiency symptom in trees. Recent field studies indicate that B deficiency may cause irreversible damage in emerging leader buds leading to bushy growth, and changes in developing needles in mature Norway spruce trees. We experimentally studied if timing of B application affects needles and buds of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings with low initial B levels. The treatments were: no B (B0); B supply from the beginning of the simulated summer (B1); starting soon after bud burst (B2) and starting at the occurrence of first needle primordia in new spruce buds (B3). At the end of the experiment, B concentration in B1 was 23 mg kg−1 (pine) or 17 mg kg−1 (spruce) and lower in the later applications. In B0 it was at deficiency limit. In B0, B2 and B3, there were fewer sclerenchyma cells, and cavities occurred in vascular cylinders in pine needles, and in spruce buds there were more tanniferous cells in the primordial shoots compared to B1. Furthermore, in all but B1 there was cell collapse in the bud apex of some spruce seedlings. The experimentally induced changes were the same as earlier reported in B deficient conifers in the field, and indicate, similarly as in the field that adequate B is necessary throughout the growing season for healthy growth, particularly for spruce. The differences between spruce and pines are due, at least partly, to the differences in time frame of needle development and in the differences in development of conducting tissues in the buds.  相似文献   

13.
  • Plants are known to respond to warming temperatures. Few studies, however, have included the temperature experienced by the parent plant in the experimental design, in spite of the importance of this factor for population dynamics.
  • We investigated the phenological and growth responses of seedlings of two key temperate tree species (Fagus sylvatica and Quercus robur) to spatiotemporal temperature variation during the reproductive period (parental generation) and experimental warming of the offspring. To this end, we sampled oak and beech seedlings of different ages (1–5 years) from isolated mother trees and planted the seedlings in a common garden.
  • Warming of the seedlings advanced bud burst in both species. In oak seedlings, higher temperatures experienced by mother trees during the reproductive period delayed bud burst in control conditions, but advanced bud burst in heated seedlings. In beech seedlings, bud burst timing advanced both with increasing temperatures during the reproductive period of the parents and with experimental warming of the seedlings. Relative diameter growth was enhanced in control oak seedlings but decreased with warming when the mother plant experienced higher temperatures during the reproductive period.
  • Overall, oak displayed more plastic responses to temperatures than beech. Our results emphasise that temperature during the reproductive period can be a potential determinant of tree responses to climate change.
  相似文献   

14.
We explored the effect of high‐growth temperatures on a dominant North American boreal tree, black spruce [Picea mariana (Mill.) B.S.P.]. In 2004 and 2005, we grew black spruce at either 22 °C/16 °C day/night temperatures [low temperature (LT)] or 30°/24 °C [high temperature (HT)] and determined how temperature affected growth, leaf morphology, photosynthesis, respiration and thermotolerance. HT spruce were 20% shorter, 58% lighter, and had a 58% lower root : shoot ratio than LT trees. Mortality was negligible in the LT treatment, but up to 14% of HT seedlings died by the end of the growing season. HT seedlings had a higher photosynthetic temperature optimum, but net photosynthesis at growth temperatures was 19–35% lower in HT than LT trees. HT seedlings had both a lower apparent maximum ribulose‐1,5‐bisphosphate carboxylation capacity (Vcmax) and a lower apparent maximum electron transport rate (Jmax) than LT trees, indicating reduced allocation to photosynthetic components. Consistently, HT needles had 26% lower leaf nitrogen content than LT needles. At each measurement temperature, HT seedlings had 20–25% lower respiration rates than LT trees; however, this did not compensate for reduced photosynthetic rates at growth temperature, leading to a greater ratio of dark respiration to net carbon dioxide assimilation rate in HT trees. HT needles had 16% lower concentrations of soluble sugars than LT needles, but similar starch content. Growth at high temperatures increased the thermotolerance of black spruce. HT trees showed less PSII inhibition than LT seedlings and no increase in electrolyte leakage when briefly exposed to 40–57 °C. While trees that develop at high temperatures have enhanced tolerance for brief, extreme heat events, the reduction in root allocation indicates that seedlings will be more susceptible to episodic soil drying and less competitive for belowground resources in future climates of the boreal region.  相似文献   

15.

Background and aims

Increased soil temperature and nutrient availability enhance soil biological activity. We studied how these affect fine root growth and survival, i.e. below-ground litter production, in relation to above-ground foliage litter production of Norway spruce (Picea abies (L.) Karst.).

Methods

The treatments, irrigation (I), soil warming + irrigation (WI), fertilization + irrigation (FI) and soil warming + fertilization + irrigation (WFI) were started in 1987 (F, I) and in 1995 (W). The annual production of fine root litter was estimated from minirhizotrons (survival) and soil-cores (biomass) and the annual above-ground litter production from litter traps.

Results and conclusions

The number and elongation of fine roots tended to be higher in WI and I compared to the other treatments, which may indicate nutrient shortage. Fine roots in the WFI treatment had the lowest median longevity and from three to fourfold higher below-ground litter production compared to WI, FI or I - higher soil temperature increased the litter input particularly into the mineral soil. Only fertilization increased the above-ground litter production. As warmer and more nutrient-rich soil significantly shortened the fine root lifespan and increased the litter input, the storage of carbon in boreal forest soil may increase in the future.  相似文献   

16.
Timing of plant phenophases is a useful biological indicator which shows how nature responds to the variation in climate. Thus, long phenological observation series help to estimate the impact of changing climate on forest plants. We investigated whether phenological patterns of downy birch Betula pubescens respond to warming climate and whether the intensity of the responses varies among phytogeographical zones. We studied data collected by the Finnish National Phenological Network from 30 observation sites across Finland during 1997–2006. The advancement in the timing of the earliest phenophase, bud burst, ranged from 0.7 days/year in southern boreal zone to 1.4 days/year in middle and northern boreal zones. Timing of bud burst was most clearly dependent on mean May temperatures. The intensity of the response to temperature increased from south to north. The advancement of bud burst resulted into a significant lengthening of the growth period by 1.2–1.6 days per year in northern and middle boreal zones, respectively, whereas the lengthening was not significant in the southern boreal zone. No trend was observed in the timing of autumn phenophases.  相似文献   

17.
18.
A comprehensive assessment of the tree growth/climate relationship was undertaken to better understand the potential impacts of climate change on the growth dynamics of four widespread and common boreal tree species, namely jack pine (Pinus banksiana), black spruce (Picea mariana), eastern larch (Larix laricina), and trembling aspen (Populus tremuloides), located at the southern limits of the Canadian boreal forest. Over intra-annual time scales, results show that precipitation is likely the main driver of stem radius change (∆R), with jack pine radius exhibiting the most consistent positive relationship. Precipitation had a stronger relationship with stem radius variation in black spruce and eastern larch during periods when volumetric water content (VWC) in the root zone was below average, pointing to the likelihood that certain species rely more heavily on available moisture in the uppermost layers of the soil column to replenish stem water, especially during extended dry periods. Warm air temperatures had an immediate negative impact on stem water content due to transpiration. This was most marked during periods of reduced moisture availability in the root zone, when trees are more susceptible to net water volume loss. During periods when moisture was not limiting, a positive relationship between lagged air temperature and ∆R was detected. Warm air temperatures may therefore play an important role in stimulating radial growth when moisture requirements are met. At annual temporal resolution, the growth/climate relationship changed over the lifetime of our study species. Over the last several decades, the relationship between precipitation and annual radial tree growth has weakened, while positive relationships between spring and summer air temperature and annual radial tree growth have emerged, likely signaling a decrease in moisture limitations, and a positive response to spring warming. Our findings reveal that boreal forest tree species may benefit from spring and summer warming over the near term, providing there is sufficient moisture to support growth. Over the long term, rates of evapotranspiration are expected to overshadow gains in moisture related to an increase in precipitation. Under these circumstances, we are likely to see reduced growth rates and an increasingly negative response of boreal tree species growth to warm air temperatures.  相似文献   

19.
根系是植物吸收土壤水分和养分的重要器官, 驱动着多个生态系统过程, 该研究揭示了实验增温对根系生物量的影响及机制, 可为气候变暖背景下土壤碳动态和生态系统过程的变化提供理论依据。该研究从已发表的151篇国内外研究论文中收集到611组数据, 通过整合分析(meta-analysis)方法研究了实验增温对根系生物量(根系总生物量、粗根生物量、细根生物量、根冠比)的影响, 并探讨了增温幅度、增温年限、增温方式的影响, 以及根系生物量对增温的响应与本底环境条件(生态系统类型、年平均气温、年降水量、干旱指数)的关系。结果表明: (1)模拟增温使细根生物量显著增加8.87%, 而对根系总生物量、粗根生物量、根冠比没有显著影响; (2)中等强度增温(1-2 ℃)使得细根生物量和根冠比分别提高14.57%和23.63%; 中短期增温实验(<5年)对细根生物量具有促进影响, 而长期增温实验(≥5年)使细根生物量有降低的趋势; 开顶箱增温和红外辐射增温分别使细根生物量显著提高了17.50%和12.16%, 而电缆加热增温使细根生物量和粗根生物量显著降低了23.44%和43.23%; (3)不同生态系统类型对于增温响应不一致, 模拟增温使苔原生态系统细根生物量显著提高了21.03%, 细根生物量对增温的响应与本底年平均气温、年降水量、干旱指数均呈显著负相关关系。  相似文献   

20.
Dehydrins expression related to timing of bud burst in Norway spruce   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号