首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.— One-third to two-thirds of all tropical carabids, or ground beetles, are arboreal, and evolution of arboreality has been proposed to be a dead end in this group. Many arboreal carabids have unusual morphological features that have been proposed to be adaptations for life on vegetation, including large, hemispheric eyes; an elongated prothorax; long elytra; long legs; bilobed fourth tarsomeres; adhesive setae on tarsi; and pectinate claws. However, correlations between these features and arboreality have not been rigorously tested previously. I examined the evolution of arboreality and morphological features often associated with this habitat in a phylogenetic context. The number and rates of origins and losses of arboreality in carabids in the subfamily Harpalinae were inferred with parsimony and maximum-likelihood on a variety of phylogenetic hypotheses. Correlated evolution in arboreality and morphological characters was tested with concentrated changes tests, maximum-likelihood, and independent contrasts on optimal phylogenies. There is strong evidence that both arboreality and the morphological features examined originated multiple times and can be reversed, and in no case could the hypothesis of equal rates of gains and losses be rejected. Several features are associated with arboreality: adhesive setae on the tarsi, bilobed tarsomeres, and possibly pectinate claws and an elongated prothorax. Bulgy eyes, long legs, and long elytra were not correlated with arboreality and are probably not arboreal adaptations. The evolution of arboreal carabids has not been unidirectional. These beetles have experienced multiple gains and losses of arboreality and the morphological characters commonly associated with the arboreal habitat. The evolutionary process of unidirectional character change may not be as widespread as previously thought and reversal from specialized lifestyles or habitats may be common.  相似文献   

2.
The endemic land snail species Mandarina hahajimana has undergone extensive habitat and morphological diversification within the Hahajima islands in the Bonin archipelago. This species has diversified into populations with ground, arboreal and semi-arboreal life histories. In addition, arboreal populations and semi-arboreal populations show diversification in preferences of species and positions of the tree on which they are found. Shell morphologies of M. hahajimana exhibit remarkable geographical variation, and they have a clear relationship with their life histories. The morphological variation of M. hahajimana results from adaptation to different lifestyles. The habitats of these populations influence the relationships with other species of Mandarina coexisting with M. hahajimana. This suggests that the morphological and ecological divergence within M. hahajimana has been induced by competitive interaction with other species of Mandarina. Character displacement may have played an important role in promoting adaptive radiation of Mandarina in the Bonin Islands.  相似文献   

3.
Molecular changes in fetal Down syndrome brain   总被引:3,自引:0,他引:3  
Trisomy of human chromosome 21 is a major cause of mental retardation and other phenotypic abnormalities collectively known as Down syndrome. Down syndrome is associated with developmental failure followed by processes of neurodegeneration that are known to supervene later in life. Despite a widespread interest in Down syndrome, the cause of developmental failure is unclear. The brain of a child with Down syndrome develops differently from that of a normal one, although characteristic morphological differences have not been noted in prenatal life. On the other hand, a review of the existing literature indicates that there are a series of biochemical alterations occurring in fetal Down syndrome brain that could serve as substrate for morphological changes. We propose that these biochemical alterations represent and/or precede morphological changes. This review attempts to dissect these molecular changes and to explain how they may lead to mental retardation.  相似文献   

4.
Molecular adaptation and the origin of land plants   总被引:5,自引:0,他引:5  
The origin and diversification of land plants was one of the most important biological radiations. Land plants are crucial components of all modern terrestrial ecosystems. The first land plants had to adapt to a wide array of new environmental challenges including desiccation, varying temperatures, and increased UV radiation. There have been numerous studies of the morphological adaptations to life on land. However the molecular adaptations to life on land have only recently gained attention. These studies have greatly benefited from the recent advances in our understanding of the phylogenetic relationships between and among the charophycean algae and the basal land plant groups. In this review I summarize the current knowledge of a variety of physiological and biochemical adaptations to land including plant growth hormones, isoprene, phenolics, and heat shock proteins.  相似文献   

5.
Evolution of cannibalism in the larval stage of pelagic fish   总被引:2,自引:0,他引:2  
Larvae of several ocean pelagic fish species, such as tunas and marlins, have been known to have large jaws, but the ecological significance of this unique morphological character has been hardly analyzed in evolutionary ecology. Pelagic spawners produce small and nutrition-poor ova, and spawning and nursery grounds of the open ocean migratory fishes are oligotrophic. We hypothesize that cannibalism would be a possible life style in the larval period and the large mouth gape would be an adaptive morphological characteristic for a cannibal in the oligotrophic pelagic environment. We showed that mouth gape size of the open ocean pelagic fish is significantly larger than that of offshore/coastal pelagic fish in larval period. A mathematical model demonstrated that cannibalism would tend to evolve in high sea environment. Our findings suggest an evolutionary pattern of cannibalism trait in the larval stage of pelagic fishes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.

Background  

The family Polypteridae, commonly known as "bichirs", is a lineage that diverged early in the evolutionary history of Actinopterygii (ray-finned fish), but has been the subject of far less evolutionary study than other members of that clade. Uncovering patterns of morphological change within Polypteridae provides an important opportunity to evaluate if the mechanisms underlying morphological evolution are shared among actinoptyerygians, and in fact, perhaps the entire osteichthyan (bony fish and tetrapods) tree of life. However, the greatest impediment to elucidating these patterns is the lack of a well-resolved, highly-supported phylogenetic tree of Polypteridae. In fact, the interrelationships of polypterid species have never been subject to molecular phylogenetic analysis. Here, we infer the first molecular phylogeny of bichirs, including all 12 recognized species and multiple subspecies using Bayesian analyses of 16S and cyt-b mtDNA. We use this mitochondrial phylogeny, ancestral state reconstruction, and geometric morphometrics to test whether patterns of morphological evolution, including the evolution of body elongation, pelvic fin reduction, and craniofacial morphology, are shared throughout the osteichthyan tree of life.  相似文献   

7.
8.
9.

Background  

The phylogenetic position of turtles is the most disputed aspect in the reconstruction of the land vertebrate tree of life. This controversy has arisen after many different kinds and revisions of investigations of molecular and morphological data. Three main hypotheses of living sister-groups of turtles have resulted from them: all reptiles, crocodiles + birds or squamates + tuatara. Although embryology has played a major role in morphological studies of vertebrate phylogeny, data on developmental timing have never been examined to explore and test the alternative phylogenetic hypotheses. We conducted a comprehensive study of published and new embryological data comprising 15 turtle and eight tetrapod species belonging to other taxa, integrating for the first time data on the side-necked turtle clade.  相似文献   

10.
Microcolonies of hemopoietic cells have occasionally been found in the choroidal stroma of the rat myelencephalic choroid plexus during neonatal life. These hemopoietic foci are mixed colonies mainly composed of erythroblasts and maturing megakaryocytes; granulocyte precursors were not identified. The morphological data indicate that both erythro- and magakaryopoiesis occur in these microcolonies. With respect to their origin, we suggest that circulating pluripotential stem cells may colonize the choroidal stroma and produce erythro- and megakaryocyte cell lines.  相似文献   

11.
The family Adelgidae is a small group of insects within Aphidoidea (Hemiptera). Adelgids are typically holocyclic with host‐alternation between the primary and secondary hosts, but some anholocyclic species persist either on the primary or secondary host. Like Aphididae, complexities and variation of adelgid life cycles are good models for understanding the evolution of complex life cycles. In this review, we outline the complex life cycles of adelgids, and current status and recent advances in adelgid life cycle studies. We also discuss the evolution of adelgid life cycles by comparing them to closely related aphid life cycles. A switch from holocycly to anholocycly on the primary host needs evolutionary innovations in gallicola behavior and reproduction. This radical evolution can be explained by mutations in a regulatory system that controls the sequence of gene sets producing phenotypes of one morph. In contrast, anholocycly on the secondary host consists of a series of exulis generations already existing in the holocycle. Thus, it may evolve by loss of primary‐host generations through extinction of the primary host, expansion beyond the geographical range of the primary host, or loss of male‐producing sexuparae that return to the primary host. Although the holocycle and its anholocyclic derivatives have been regarded as different species, morphological, ecological and genetic differences are too subtle to separate them into different species. The holocycle and its anholocyclic derivatives should not be split into different species without clearly identifiable morphological differences.  相似文献   

12.
The morphology of apoptosis   总被引:26,自引:0,他引:26  
The concept of apoptotic cell death as an essential part of the development and life of complex organisms has been devised in different situations and tested from various angles. This review article discusses the morphological changes during death by apoptosis. In cells undergoing apoptosis, an intracellular signalling pathway operates cell autonomously to implement the death and disposal of the cell. The similarity of the biochemical events during apoptosis in different situations is reflected by a high uniformity of morphological changes in many situations of naturally occurring or experimentally induced cell death. The unifying concept of apoptosis has been derived from the observation of this morphological consistency of dying cells almost 30 years ago. Since then, we have learned much about the intracellular signalling in the apoptotic process and the molecular background has been delineated which guides the initiation of the morphological changes. Here, an attempt is made to present the current knowledge about the molecular events in the development of these morphological alterations and to place these changes in the context of apoptotic cell death.  相似文献   

13.
14.
The free-living nematode Rhabditophanes sp. has recently been placed in a clade of animal parasites and may be a unique example of a reversal to a nonparasitic lifestyle. Detailed morphological analysis of the intestine reveals the unusual and unique structure of splitting microlamellae forming a meshwork with cavities along the entire intestinal tract. Secretion vesicles were observed along the whole tract and along the length of the lamellae. It is suggested that these lamellae are adaptations to a different digestive strategy where low food availability and a low absorption surface are compensated for by maximizing the nutrient uptake efficiency along the entire length of the intestine. The likely reversal to a free-living life cycle may have caused drastic changes in diet, providing the necessary driving forces to such morphological changes.  相似文献   

15.
The resolution of taxonomic classifications for delphinid cetaceans has been problematic, especially for species in the genera Delphinus, Tursiops and Stenella. The frequent lack of correspondence between morphological and genetic differentiation in these species raises questions about the mechanisms responsible for their evolution. In this study we focus on the genus Delphinus, and use molecular markers to address questions about speciation and the evolution of population structure. Delphinus species have a worldwide distribution and show a high degree of morphological variation. Two distinct morphotypes, long-beaked and short-beaked, have been considered different species named D. capensis and D. delphis, respectively. However, genetic differentiation between these two forms has only been demonstrated in the Pacific. We analysed samples from eight different geographical regions, including two morphologically defined long-beaked form populations, and compared these with the eastern North Pacific populations. We found high differentiation among the populations described as long-beaked instead of the expected monophyly, suggesting that these populations may have evolved from independent events converging on the same morphotype. We observed low genetic differentiation among the short-beaked populations across a large geographical scale. We interpret these phylogeographical patterns in the context of life history and population structure in related species.  相似文献   

16.
The life cycle of the itch mite Sarcoptes scabiei (L.), an intracutaneous parasite of man and animals, has been studied. The paper concerns morphological adaptations, embryonal and postembryonal development, life cycle pattern, scabious passage as a reproductive formation, invasive stages, feeding, reproduction and topical relationships with the host, distribution and survival in the environment.  相似文献   

17.
The interaction of morphological changes of the uterus and fecundity of the strobilae of cestodes has been investigated. It is shown that cestodes with maximal fecundity have different and highly effective ways of supplying eggs with nutrients. It is noted that differences in fecundity of cestodes depend not only on their strategy of reproduction, ecology, and complexity of life cycles but also on the complexity of interactions between the uterus and the developing eggs.  相似文献   

18.
Comparing Mutational Variabilities   总被引:20,自引:10,他引:10       下载免费PDF全文
D. Houle  B. Morikawa    M. Lynch 《Genetics》1996,143(3):1467-1483
We have reviewed the available data on V(M), the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare V(M) values, we use three dimensionless quantities: mutational heritability, V(M)/V(E); the mutational coefficient of variation, CV(M); and the ratio of the standing genetic variance to V(M), V(G)/V(M). Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CV(M). This is confirmed; life history traits have a median CV(M) value more than six times higher than that for morphological traits. V(G)/V(M) approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, V(G)/V(M) must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. V(G)/V(M) averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model.  相似文献   

19.
Taxonomy of phyllophoroid algae: the implications of life history   总被引:1,自引:1,他引:0  
Maggs  Christine A. 《Hydrobiologia》1990,204(1):119-124
The Phyllophoraceae Rabenhorst (Gigartinales) is a family that shows a great diversity of life history patterns. The three largest phyllophoroid genera, Ahnfeltia, Gymnogongrus and Phyllophora, all commercial sources of phycocolloids, show the greatest range of life history. Information from life history studies has been of significance to classification of the Phyllophoraceae at the family, generic and specific levels. In the tetrasporophyte of Ahnfeltia plicata, previously known as Porphyrodiscus simulans, tetrasporangia are zonate and borne terminally in small superficial sori in contrast to the chains of cruciate tetrasporangia characteristic of the Phyllophoraceae. A study of reproduction and life history in the type species, A. plicata, from the Atlantic concluded that the unique carposporophyte development, in conjunction with the most primitive pit-plug structure known in the Florideophycidae, justified the proposal of a new family Ahnfeltiaceae Maggs et Pueschel in the Ahnfeltiales Maggs et Pueschel. Most Pacific species of Ahnfeltia are instead phyllophoracean and closely related to Gymnogongrus. Gymnogongrus griffithsiae, the type species, forms tetrasporoblasts whereas the majority form internal cystocarps and have heteromorphic life histories. Proposals to divide the genus by life history type require further detailed morphological and ontogenetic studies of G. griffithsiae. Phyllophora species exhibit at least three different types of life history, tetrasporoblastic, isomorphic and heteromorphic, and this genus could likewise be split along these lines. At the specific level, intraspecific life history variability appears to be related to morphological variation in some species of Gymnogongrus.  相似文献   

20.
Herbaceous plants collectively known as geophytes, which regrow from belowground buds, are distributed around the globe and throughout the land plant tree of life. The geophytic habit is an evolutionarily and ecologically important growth form in plants, permitting novel life history strategies, enabling the occupation of more seasonal climates, mediating interactions between plants and their water and nutrient resources, and influencing macroevolutionary patterns by enabling differential diversification and adaptation. These taxa are excellent study systems for understanding how convergence on a similar growth habit (i.e., geophytism) can occur via different morphological and developmental mechanisms. Despite the importance of belowground organs for characterizing whole-plant morphological diversity, the morphology and evolution of these organs have been vastly understudied with most research focusing on only a few crop systems. Here, we clarify the terminology commonly used (and sometimes misused) to describe geophytes and their underground organs and highlight key evolutionary patterns of the belowground morphology of geophytic plants. Additionally, we advocate for increasing resources for geophyte research and implementing standardized ontological definitions of geophytic organs to improve our understanding of the factors controlling, promoting, and maintaining geophyte diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号