首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy. Albumin overload may induce MMP-9 expression and secretion by PECs via the activation of p44/42 MAPK pathway.  相似文献   

2.
Tenascin-C is an oligomeric glycoprotein of the extracellular matrix that has been found to have both adhesive and anti-adhesive properties for cells. Recent elucidation of the two major TNC splice variants (320 kDa and 220 kDa) has shed light on the possibility of varying functions of the molecule based on its splicing pattern. Tenascin-C is prominently expressed in embryogenesis and in pathologic conditions such as tumorogenesis and wound healing. Fibronectin is a prominent adhesive molecule of the extracellular matrix that is often co-localized with tenascin-C in these processes. We studied the chondrosarcoma cell line JJ012 with enzyme-linked immunoabsorbance assays, cell attachment assays and antibody-blocking assays to determine the adhesive/anti-adhesive properties of the two major tenascin-C splice variants with respect to fibronectin and their effect on chondrosarcoma cell attachment. We found that the small tenascin-C splice variant (220 kDa) binds to fibronectin, whereas the large tenascin-C splice variant (320 kDa) does not. In addition, the small tenascin-C splice variant was found to decrease adhesion for cells when bound to fibronectin, but contributed to adhesion when bound to plastic in fibronectin-coated wells. Antibody blocking experiments confirmed that both the small tenascin-C splice variant and fibronectin contribute to cell adhesion when bound to plastic. The large tenascin-C splice variant did not promote specific cell attachment. We hypothesize that the biologic activity of tenascin-C is dependent on the tissue-specific splicing pattern. The smaller tenascin-C isoform likely plays a structural and adhesive role, whereas the larger isoform, preferentially expressed in malignant tissue, likely plays a role in cell egress and metastasis.  相似文献   

3.
4.
It has been demonstrated that hydrogen peroxide (H(2)O(2)) is directly associated with elevated matrix metalloproteinase-2 (MMP-2) expression in several cell lines. Electrochemically reduced water (ERW), produced near the cathode during electrolysis, and scavenges intracellular H(2)O(2) in human fibrosarcoma HT1080 cells. RT-PCR and zymography analyses revealed that when HT1080 cells were treated with ERW, the gene expression of MMP-2 and membrane type 1 MMP and activation of MMP-2 was repressed, resulting in decreased invasion of the cells into matrigel. ERW also inhibited H(2)O(2)-induced MMP-2 upregulation. To investigate signal transduction involved in MMP-2 downregulation, mitogen-activated protein kinase (MAPK)-specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (MAPK/extracellular regulated kinase kinase 1 inhibitor) and c-Jun NH(2)-terminal kinase inhibitor II, were used to block the MAPK signal cascade. MMP-2 gene expression was only inhibited by SB203580 treatment, suggesting a pivotal role of p38 MAPK in regulation of MMP-2 gene expression. Western blot analysis showed that ERW downregulated the phosphorylation of p38 both in H(2)O(2)-treated and untreated HT1080 cells. These results indicate that the inhibitory effect of ERW on tumor invasion is due to, at least in part, its antioxidative effect.  相似文献   

5.
6.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix synthesis leading to progressive glomerular fibrosis. The intracellular signaling mechanisms involved in this process remain incompletely understood. The p38 mitogen-activated protein kinase (MAPK) is a major stress signal transducing pathway that is rapidly activated by TGF-beta1 in mesangial cells. We have previously demonstrated MKK3 as the immediate upstream MAPK kinase required for selective activation of p38 MAPK isoforms, p38alpha and p38delta, and stimulation of pro-alpha1(I) collagen by TGF-beta1 in murine mesangial cells. In this study, we further sought to determine MAPK kinase 3 (MKK3)-dependent TGF-beta1 responses by gene expression profiling analysis utilizing mesangial cells isolated from Mkk3-/- mice compared with Mkk3+/+ controls. Interestingly, vascular endothelial growth factor (VEGF) was identified as a TGF-beta1-induced gene affected by deletion of Mkk3. VEGF is a well known endothelial mitogen, whose actions in nonendothelial cell types are still not well understood. We confirmed that TGF-beta1 increased VEGF mRNA and protein synthesis of VEGF164 and VEGF188 isoforms in wild-type mesangial cells. However, in the Mkk3-/- mesangial cells, both TGF-beta1-induced VEGF mRNA and VEGF164 protein expression were inhibited, whereas TGF-beta1-induced VEGF188 protein expression was unaffected. Furthermore, transfection of dominant negative mutants of p38alpha and p38delta resulted in marked inhibition of TGF-beta1-induced VEGF164 expression but not VEGF188, and treatment with recombinant mouse VEGF164 increased collagen and fibronectin mRNA expression in mesangial cells. Taken together, our findings suggest a critical role for the MKK3-p38alpha and p38delta MAPK pathway in mediating VEGF164 isoform-specific stimulation by TGF-beta1 in mesangial cells. Further, VEGF164 stimulates collagen and fibronectin expression in mesangial cells and thus in turn enhances TGF-beta1-induced extracellular matrix and may play an important role in progressive glomerular fibrosis.  相似文献   

7.
Components of the extracellular matrix contain cryptic domains, which are exposed by proteolysis and elicit biological responses distinct from intact molecules. The disparate cellular response to extracellular matrix fragments and parent intact molecules suggests differential recognition and signaling pathways. In experiments reported here, we demonstrate that urokinase and matrix metalloproteinase-9 expression by RAW264.7 macrophages is stimulated by a synthetic laminin peptide derived from the alpha1-chain (SRARKQAASIKVAVSADR), whereas intact laminin-1 has no effect on proteinase expression by macrophages. Incubation of macrophages with alpha1:SRARKQAASIKVAVSADR stimulates tyrosine phosphorylation of several proteins including mitogen-activated protein kinase (MAPK)(erk1/2). In contrast, neither intact laminin-1 nor the beta1-chain peptide CDPGYIGSR stimulated protein tyrosine phosphorylation in these cells. Inhibition of tyrosine kinases or protein kinase C blocked alpha1-chain peptide-induced phosphorylation of MAPK(erk1/2) and the up-regulation of steady state levels of urokinase mRNA and matrix metalloproteinase-9 activity. A MAPK kinase inhibitor blocked alpha1-chain-induced phosphorylation of MAPK(erk1/2) and the induction of proteinase expression. Intact laminin-1, which was unable to induce macrophage proteinase expression, failed to stimulate the phosphorylation of MAPK(erk1/2). These data demonstrate that incubation of macrophages with alpha1:SRARKQAASIKVAVSADR, but not intact laminin-1, triggers protein kinase C-dependent activation of MAPK(erk1/2), leading to the up-regulation of proteinase expression.  相似文献   

8.
Silibinin, isolated from Silybum marianum, has been known for its hepatoprotective properties and recent studies have revealed its antiproliferative and apoptotic effects on several cancer cells. An inhibitory effect of silibinin on tumor invasion and matrix metalloproteinase-2 (MMP-2) and urokinasetype plasminogen activator (u-PA) activities in culture medium has been observed in our previous study and the impacts of silibinin on enzyme activities of MMPs, u-PA, mitogen-activated protein kinase (MAPK) and Akt in A549 cells were continued to explore in this study. Our results showed that silibinin exerted an inhibitory effect on the phosphorylation of Akt, as well as extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are the members of the MAPK family involved in the up-regulation of MMPs or u-PA, while no effects on the activities of p38(MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase were observed. A treatment with silibinin to A549 cells also led to a dose-dependent inhibition on the activation of NF-kappaB, c-Jun and c-Fos. Additionally, the treatment of inhibitors specific for MEK (U0126) or PI3K (LY294002) to A549 cells could result in a reduced expression of MMP-2 and u-PA concomitantly with a marked inhibition on cell invasion. These findings suggested that the inhibition on MMP-2 and u-PA expression by silibinin may be through a suppression on ERK1/2 or Akt phosphorylation, which in turn led to the reduced invasiness of the cancer cells.  相似文献   

9.
目的 研究软骨肉瘤组织中Notch通路、p38丝裂原活化蛋白激酶(MAPK)及基质金属蛋白酶(MMPs)的表达情况,探讨它们在软骨肉瘤间质浸润中的作用机制.方法 收集正常软骨组织标本10例、内生性软骨瘤标本23例和软骨肉瘤标本32例,分别用免疫组化、Western blot和real-time PCR检测Notch1、Jagged1、MMP-1、MMP-13、p38 MAPK及p-p38 MAPK的表达情况.结果 与正常软骨组织相比,Notch1、Jagged1、MMP-1、MMP-13及p-p38 MAPK在内生性软骨瘤表达部分升高,在软骨肉瘤表达均明显增加(P<0.01).p38 MAPK在正常软骨组织、内生性软骨瘤及软骨肉瘤组织中表达无明显差异(P>0.05).结论 Notch通路和p38 MAPK通过调节基质金属蛋白酶在软骨肉瘤中的表达,来增加软骨肉瘤的浸润转移能力.  相似文献   

10.
We reported previously that down-regulating or functionally blocking alphav integrins inhibits endogenous p38 mitogen-activated protein kinase (MAPK) activity and urokinase plasminogen activator (uPA) expression in invasive MDA-MB-231 breast cancer cells whereas engaging alphav integrins with vitronectin activates p38 MAPK and up-regulates uPA expression (Chen, J., Baskerville, C., Han, Q., Pan, Z., and Huang, S. (2001) J. Biol. Chem. 276, 47901-47905). Currently, it is not clear what upstream and downstream signaling molecules of p38 MAPK mediate alphav integrin-mediated uPA up-regulation. In the present study, we found that alphav integrin ligation activated small GTPase Rac1 preferentially, and dominant negative Rac1 inhibited alphav integrin-mediated p38 MAPK activation. Using constitutively active MAPK kinases, we found that both constitutively active MKK3 and MKK6 mutants were able to activate p38 MAPK and up-regulate uPA expression, but only dominant negative MKK3 blocked alphav integrin-mediated p38 MAPK activation and uPA up-regulation. These results suggest that MKK3, rather than MKK6, mediates alphav integrin-induced p38 MAPK activation. Among the potential downstream effectors of p38 MAPK, we found that only MAPK-activated protein kinase 2 affects alphav integrin-mediated uPA up-regulation significantly. Finally, using beta-globin reporter gene constructs containing uPA mRNA 3'-untranslated region (UTR) and adenosine/uridine-rich elements-deleted 3'-UTR, we demonstrated that p38 MAPK/MAPK-activated protein kinase 2 signaling pathway regulated uPA mRNA stability through a mechanism involving the adenosine/uridine-rich elements sequence in 3'-UTR of uPA mRNA.  相似文献   

11.
12.
13.
14.
An increase in cellular levels of cyclic nucleotides activates serine/threonine-dependent kinases that lead to diverse physiological effects. Recently we reported the activation of the p38 mitogen-activated protein kinase (MAPK) pathway in neutrophils by a cGMP-dependent mechanism. In this study we demonstrated that exogenously supplied nitric oxide leads to activation of p38 MAPK in 293T fibroblasts. Phosphorylation of p38 corresponded with an increase in ATF-2-dependent gene expression. The effect of nitric oxide was mimicked by addition of 8-bromo-cGMP, indicating that activation of soluble guanylyl cyclase was involved. The importance of cGMP-dependent protein kinase in the activation of p38 MAPK by nitric oxide in 293T cells was assessed in a transfection based assay. Overexpression of cGMP-dependent protein kinase-1alpha caused phosphorylation of p38 in these cells and potentiated the effectiveness of cGMP. Overexpression of a catalytically inactive mutant form of this enzyme (T516A) blocked the ability of both nitric oxide and 8-bromo-cGMP to activate p38 as measured by both p38 phosphorylation and ATF-2 driven gene expression. Together, these data demonstrate that nitric oxide stimulates a novel pathway leading to activation of p38 MAPK that requires activation of cGMP-dependent protein kinase.  相似文献   

15.
16.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.  相似文献   

17.
Idiopathic pulmonary fibrosis is characterized by myofibroblast accumulation, extracellular matrix (ECM) remodeling, and excessive collagen deposition. ECM-producing myofibroblasts may originate from epithelial cells through epithelial to mesenchymal transition (EMT). TGF-β1 is an inducer of EMT in pulmonary epithelial cells in vitro and in vivo, though the mechanisms are unclear. We hypothesized that TGF-β1 induced EMT through Smad-dependent and -independent processes. To test this hypothesis, we studied the roles and mechanisms of TGF-β1-induced Smad and p38 mitogen-activated protein kinase (MAPK) signaling in EMT-related changes in pulmonary epithelial cells. Exposure of pulmonary epithelial 1HAEo(-) cells to TGF-β1 resulted in morphological and molecular changes of EMT over a 96-h period; loss of cell-cell contact, cell elongation, down-regulation of E-cadherin, up-regulation of fibronectin, and up-regulation of collagen I. Both Smad2/3 and p38 MAPK signaling pathways were activated by TGF-β1. However, neither Smad2/3 nor p38 MAPK were required for the down-regulation of E-cadherin, yet p38 MAPK was associated with fibronectin up-regulation. Both Smad2/3 and p38 MAPK had a role in regulation of TGF-β1-induced collagen expression. Furthermore, these data demonstrate that Smads and p38 MAPK differentially regulate EMT-related changes in pulmonary epithelial cells.  相似文献   

18.
Neutral matrix metalloproteinases (MMPs) play an important role in bone matrix degradation accompanied by bone remodeling. We herein show for the first time that macrophage migration inhibitory factor (MIF) up-regulates MMP-13 (collagenase-3) mRNA of rat calvaria-derived osteoblasts. The mRNA up-regulation was seen at 3 h in response to MIF (10 microg/ml), reached the maximum level at 6-12 h, and returned to the basal level at 36 h. MMP-13 mRNA up-regulation was preceded by up-regulation of c-jun and c-fos mRNA. Tissue inhibitor of metalloproteinase (TIMP)-1 and MMP-9 (92-kDa type IV collagenase) were also up-regulated, but to a lesser extent. The MMP-13 mRNA up-regulation was significantly suppressed by genistein, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine. Similarly, a selective mitogen-activated protein kinase (MAPK) kinase (MEK)1/2 inhibitor (PD98059) and c-jun/activator protein (AP)-1 inhibitor (curcumin) suppressed MMP-13 mRNA up-regulation induced by MIF. The mRNA levels of c-jun and c-fos in response to MIF were also inhibited by PD98059. Consistent with these results, MIF stimulated phosphorylation of tyrosine, autophosphorylation of Src, activation of Ras, activation of extracellular signal-regulated kinases (ERK) 1/2, a MAPK, but not c-Jun N-terminal kinase or p38, and phosphorylation of c-Jun. Osteoblasts obtained from calvariae of newborn JunAA mice, defective in phosphorylation of c-Jun, or newborn c-Fos knockout (Fos -/- ) mice, showed much less induction of MMP-13 with the addition of MIF than osteoblasts obtained from wild-type or littermate control mice. Taken together, these results suggest that MIF increases the MMP-13 mRNA level of rat osteoblasts via the Src-related tyrosine kinase-, Ras-, ERK1/2-, and AP-1-dependent pathway.  相似文献   

19.
Kim do Y  Jung MS  Park YG  Yuan HD  Quan HY  Chung SH 《BMB reports》2011,44(10):659-664
As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).  相似文献   

20.
During hematogenous cancer metastasis, tumor cells separate from a primary mass, enter the bloodstream, disperse throughout the body, migrate across vessel walls, and generate distant colonies. The later steps of metastasis superficially resemble leukocyte extravasation, a process initiated by selectin-mediated cell tethering to the blood vessel wall followed by integrin-mediated arrest and transendothelial migration. Some cancer cells express P-selectin ligands and attach to immobilized P-selectin, suggesting that these cells can arrest in blood vessels using sequential selectin- and integrin-mediated adhesion, as do leukocytes. We hypothesize that selectin binding may regulate subsequent integrin-mediated steps in metastasis. Using a model system of cultured Colo 320 human colon adenocarcinoma cells incubated with soluble P-selectin-IgG chimeric protein, we have found that P-selectin can stimulate activation of the alpha(5)beta(1) integrin resulting in a specific increase of adhesion and spreading of these cells on fibronectin substrates. P-selectin binding also induced activation of p38 mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol 3-kinase (PI3-K). PI3-K inhibitors blocked P-selectin-mediated integrin activation, cell attachment, and cell spreading. Inhibition of p38 MAPK activation blocked cell spreading, but not cell attachment. P-selectin binding also resulted in formation of a signaling complex containing PI3-K and p38 MAPK. These results suggest that P-selectin binding to tumor cells can activate alpha(5)beta(1) integrin via PI3-K and p38 MAPK signaling pathways leading to increased cell adhesion. We propose that P-selectin ligands are important tumor cell signaling molecules that modulate integrin-mediated cell adhesion in the metastatic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号