首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The endothelium comprises a cellular barrier between the circulation and tissues. We have previously shown that activation of protease-activated receptor 1 (PAR-1) and PAR-2 on the surface of human coronary artery endothelial cells by tryptase or thrombin increases group VIA phospholipase A(2) (iPLA(2)β) activity and results in production of multiple phospholipid-derived inflammatory metabolites. We isolated cardiac endothelial cells from hearts of iPLA(2)β-knockout (iPLA(2)β-KO) and wild-type (WT) mice and measured arachidonic acid (AA), prostaglandin I(2) (PGI(2)), and platelet-activating factor (PAF) production in response to PAR stimulation. Thrombin (0.1 IU/ml) or tryptase (20 ng/ml) stimulation of WT endothelial cells rapidly increased AA and PGI(2) release and increased PAF production. Selective inhibition of iPLA(2)β with (S)-bromoenol lactone (5 μM, 10 min) completely inhibited thrombin- and tryptase-stimulated responses. Thrombin or tryptase stimulation of iPLA(2)β-KO endothelial cells did not result in significant PAF production and inhibited AA and PGI(2) release. Stimulation of cardiac endothelial cells from group VIB (iPLA(2)γ)-KO mice increased PAF production to levels similar to those of WT cells but significantly attenuated PGI(2) release. These results indicate that cardiac endothelial cell PAF production is dependent on iPLA(2)β activation and that both iPLA(2)β and iPLA(2)γ may be involved in PGI(2) release.  相似文献   

2.
We demonstrated previously that thrombin stimulation of human coronary artery endothelial cells (HCAEC) results in release of choline lysophospholipids [lysophosphatidylcholine (lysoPtdCho) and lysoplasmenylcholine (lysoPlsCho)]. These amphiphilic metabolites have been implicated in arrhythmogenesis following the onset of myocardial ischemia, but studies examining their direct effects on the vasculature remain limited. We and others have shown that thrombin and lysoPtdCho can increase cell surface adhesion molecules and adherence of circulating inflammatory cells to the endothelium. This study supports our hypothesis that these changes may be mediated, at least in part, by lysoPlsCho, thus implicating this metabolite as an inflammatory mediator in the coronary vasculature and a modulator of the progression of atherosclerosis. Apical stimulation of HCAEC with thrombin resulted in the production and release of choline lysophospholipids from the apical surface of the HCAEC monolayer. Basolateral stimulation had no effect on choline lysophospholipid production or release from either the apical or basolateral surface of the HCAEC monolayer. Incubation of HCAEC with lysoPlsCho or lysoPtdCho resulted in similar increases in HCAEC surface expression of P-selectin and E-selectin. Furthermore, lysoPlsCho increased cell surface expression of P-selectin, E-selectin, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 with a time course similar to that of thrombin stimulation. Increased presence of cell surface adhesion molecules may contribute to the significant increase in adherence of neutrophils to either thrombin- or lysoPlsCho-stimulated HCAEC. These results demonstrate that the presence of thrombin at sites of vascular injury in the coronary circulation, resulting in increased choline lysophospholipid release from the HCAEC apical surface, has the potential to propagate vascular inflammation by upregulation of adhesion molecules and recruitment of circulating inflammatory cells to the endothelium. endothelium; arrhythmogenesis; inflammation; lysophospholipids  相似文献   

3.
Although histamine plays an essential role in inflammation, its influence on cyclooxygenases (COX) and prostanoid homeostasis is not well understood. In this study, we investigated the effects of histamine on the expression of COX-1 and COX-2 and determined their contribution to the production of PGE(2), prostacyclin (PGI(2)), and thromboxane A(2) in human coronary artery endothelial cells (HCAEC). Incubation of HCAEC monolayers with histamine resulted in marked increases in the expression of COX-2 and production of PGI(2) and PGE(2) with no significant change in the expression of COX-1. Histamine-induced increases in PGI(2) and PGE(2) production were due to increased expression and function of COX-2 because gene silencing by small interfering RNA or inhibition of the catalytic activity by a COX-2 inhibitor blocked prostanoid production. The effects of histamine on COX-2 expression and prostanoid production were mediated through H(1) receptors. In addition to the direct effect, histamine was found to amplify LPS-stimulated COX-2 expression and PGE(2) and PGI(2) production. In contrast, histamine did not stimulate thromboxane A(2) production in resting or LPS-activated HCAEC. Histamine-induced increases in the production of PGE(2) and PGI(2) were associated with increased expression of mRNA encoding PGE(2) and PGI(2) synthases. The physiological role of histamine on the regulation of COX-2 expression in the vasculature is indicated by the findings that the expression of COX-2 mRNA, but not COX-1 mRNA, was markedly reduced in the aortic tissues of histidine decarboxylase null mice. Thus, histamine plays an important role in the regulation of COX-2 expression and prostanoid homeostasis in vascular endothelium.  相似文献   

4.
We demonstrated previously that thrombin stimulation of endothelial cells activates a membrane-associated, Ca2+-independent phospholipase A2 (iPLA2) that selectively hydrolyzes arachidonylated plasmalogen phospholipids. We report that incubation of human coronary artery endothelial cells (HCAEC) with phorbol 12-myristate 13-acetate (PMA) to activate protein kinase C (PKC) resulted in hydrolysis of cellular phospholipids similar to that observed with thrombin stimulation (0.05 IU/ml; 10 min). Thrombin stimulation resulted in a decrease in arachidonylated plasmenylcholine (2.7 ± 0.1 vs. 5.3 ± 0.4 nmol PO4/mg of protein) and plasmenylethanolamine (7.5 ± 1.0 vs. 12.0 ± 0.9 nmol PO4/mg of protein). Incubation with PMA resulted in decreases in arachidonylated plasmenylcholine (3.2 ± 0.3 nmol PO4/mg of protein) and plasmenylethanolamine (6.0 ± 1.0 nmol PO4/mg of protein). Incubation of HCAEC with the selective iPLA2 inhibitor bromoenol lactone (5 mM; 10 min) inhibited accelerated plasmalogen phospholipid hydrolysis in response to both PMA and thrombin stimulation. Incubation of HCAEC with PMA (100 nM; 5 min) resulted in increased arachidonic acid release (7.1 ± 0.3 vs. 1.1 ± 0.1%) and increased production of lysoplasmenylcholine (1.4 ± 0.2 vs. 0.6 ± 0.1 nmol PO4/mg of protein), similar to the responses observed with thrombin stimulation. Downregulation of PKC by prolonged exposure to PMA (100 nM; 24 h) completely inhibited thrombin-stimulated increases in arachidonic acid release (7.1 ± 0.6 to 0.5 ± 0.1%) and lysoplasmenylcholine production (2.0 ± 0.1 to 0.2 ± 0.1 nmol PO4/mg of protein). These data suggest that PKC activates iPLA2 in HCAEC, leading to accelerated plasmalogen phospholipid hydrolysis and increased phospholipid metabolite production. lysophospholipids; cell signaling; phospholipid metabolism; arachidonic acid  相似文献   

5.
We examined the regulation of matrix metalloproteinase (MMP) production by mitogen-activated protein kinases and cyclooxygenases (COXs) in fibroblast-like synoviocytes (FLSCs). IL-1beta and TNF-alpha stimulated FLSC extracellular signal-regulated kinase (ERK) activation as well as MMP-1 and -13 release. Pharmacologic inhibitors of ERK inhibited MMP-1, but not MMP-13 expression. Whereas millimolar salicylates inhibited both ERK and MMP-1, nonsalicylate COX and selective COX-2 inhibitors enhanced stimulated MMP-1 release. Addition of exogenous PGE(1) or PGE(2) inhibited MMP-1, reversed the effects of COX inhibitors, and inhibited ERK activation, suggesting that COX-2 activity tonically inhibits MMP-1 production via ERK inhibition by E PGs. Exposure of FLSCs to nonselective COX and selective COX-2 inhibitors in the absence of stimulation resulted in up-regulation of MMP-1 expression in an ERK-dependent manner. Moreover, COX inhibition sufficient to reduce PGE levels increased ERK activity. Our data indicate that: 1) ERK activation mediates MMP-1 but not MMP-13 release from FLSCs, 2) COX-2-derived E PGs inhibit MMP-1 release from FLSCs via inhibition of ERK, and 3) COX inhibitors, by attenuating PGE inhibition of ERK, enhance the release of MMP-1 by FLSC.  相似文献   

6.
Thrombin stimulation of rabbit ventricular myocytes activates a membrane-associated, Ca(2+)-independent phospholipase A(2) (PLA(2)) capable of hydrolyzing plasmenylcholine (choline plasmalogen), plasmanylcholine (alkylacyl choline phospholipid), and phosphatidylcholine substrates. To identify the endogenous phospholipid substrates, we quantified the effects of thrombin stimulation on diradyl phospholipid mass and arachidonic acid and lysophospholipid production. Thrombin stimulation resulted in a selective decrease in arachidonylated plasmenylcholine, with no change in arachidonylated phosphatidylcholine. The decrease in arachidonylated plasmenylcholine was accompanied by an increase in plasmenylcholine species containing linoleic and linolenic acids at the sn-2 position. A decrease in arachidonylated plasmenylethanolamine was also observed after thrombin stimulation, with no concomitant change in arachidonylated phosphatidylethanolamine. Thrombin stimulation resulted in the selective production of lysoplasmenylcholine, with no increase in lysophosphatidylcholine content. There was no evidence for significant acetylation of lysophospholipids to form platelet-activating factor. Arachidonic acid released after thrombin stimulation was rapidly oxidized to prostacyclin. Thus thrombin-stimulated Ca(2+)-independent PLA(2) selectively hydrolyzes arachidonylated plasmalogen substrates, resulting in production of lysoplasmalogens and prostacyclin as the principal bioactive products.  相似文献   

7.
Thrombin stimulation of human coronary artery endothelial cells (HCAEC) results in activation of a membrane-associated, calcium-independent phospholipase A2 (iPLA2) that selectively hydrolyzes membrane plasmalogen phospholipids. Rupture of an atherosclerotic plaque and occlusion of the coronary vasculature results in a coronary ischemic event in which HCAEC in the ischemic area would be exposed to dramatic decreases in oxygen tension in addition to thrombin exposure. We exposed HCAEC to hypoxia in the presence or absence of thrombin stimulation and measured iPLA2 activation, membrane phospholipid hydrolysis, and the accumulation of biologically active phospholipid metabolites. HCAEC exposed to hypoxia, thrombin stimulation, or a combination of the two conditions demonstrated an increase in iPLA2 activity and an increase in arachidonic acid release from plasmenylcholine. Thrombin stimulation of normoxic HCAEC did not result in an accumulation of choline lysophospholipids, but hypoxia alone and in combination with thrombin stimulation led to a significant accumulation of lysoplasmenylcholine (LPlsCho). We propose that the presence of hypoxia inhibits LPlsCho catabolism, at least in part, as a result of the accumulation of long-chain acylcarnitines. The combination of increased production and decreased catabolism of LPlsCho is necessary for its accumulation. Pretreatment with bromoenol lactone to inhibit iPLA2 blocked membrane phospholipid hydrolysis and production of membrane phospholipid-derived metabolites. The increase in iPLA2 activity and the subsequent accumulation of membrane phospholipid-derived metabolites in HCAEC exposed to hypoxia or thrombin stimulation alone, and particularly in combination, have important implications in inflammation and arrhythmogenesis in atherosclerosis/thrombosis and subsequent myocardial ischemia. myocardial ischemia; arrhythmogenesis; thrombosis  相似文献   

8.
Recent research suggests that activation of protease-activated receptors (PARs) on the surface of endothelial and epithelial cells may play a role in general mechanisms of inflammation. We hypothesized that mast cell tryptase activation of endothelial cell PAR-2 is coupled to increased calcium-independent PLA2 (iPLA2) activity and increased platelet-activating factor (PAF) production that may play a role in inflammatory cell recruitment at sites of vascular injury. Stimulation of human coronary artery endothelial cells (HCAEC) with 20 ng/ml tryptase increased iPLA2 activity, arachidonic acid release, and PAF production. These tryptase-stimulated responses were inhibited by pretreatment with the iPLA2-selective inhibitor bromoenol lactone (BEL; 5 µM, 10 min). Similar patterns of increased iPLA2 activity and PAF production were also seen when HCAEC were treated with SLIGKV, which represents the tethered ligand sequence for the human PAR-2 once the receptor is cleaved by tryptase. Tryptase stimulation also increased cell surface expression of P-selectin, decreased electrical resistance, and increased neutrophil adherence to the endothelial cell monolayer. The tryptase-stimulated increases in both cell surface P-selectin expression and neutrophil adhesion were also inhibited with BEL pretreatment. We conclude that tryptase stimulation of HCAEC contributes importantly to early inflammatory events after vascular injury by activation of iPLA2, leading to arachidonic acid release, PAF production, cell surface P-selectin expression, and increased neutrophil adherence. atherosclerosis; endothelial cells  相似文献   

9.
P388D1 cells release arachidonic acid (AA) and produce prostaglandin E2 (PGE2) upon long-term stimulation with lipopolysaccharide (LPS). The cytosolic Group IVA (GIVA) phospholipase A2 (PLA2) has been implicated in this pathway. LPS stimulation also results in increased expression and secretion of a secretory PLA2, specifically GV PLA2. To test whether GV PLA2 contributes to PGE2 production and whether GIVA PLA2 activation increases the expression of GV PLA2, we utilized the specific GIVA PLA2 inhibitor pyrrophenone and second generation antisense oligonucleotides (AS-ONs) designed to specifically inhibit expression and activity of GV PLA2. Treatment of P388D1 cells with antisense caused a marked decrease in basal GV PLA2 mRNA and prevented the LPS-induced increase in GV PLA2 mRNA. LPS-stimulated cells release active GV PLA2 into the medium, which is inhibited to background levels by antisense treatment. However, LPS-induced PGE2 release by antisense-treated cells and by control cells are not significantly different. Collectively, the results suggest that the upregulation of GV PLA2 during long-term LPS stimulation is not required for PGE2 production by P388D1 cells. Experiments employing pyrrophenone suggested that GIVA PLA2 is the dominant player involved in AA release, but it appears not to be involved in the regulation of LPS-induced expression of GV PLA2 or cyclooxygenase-2.  相似文献   

10.
The effect of various factors upon prostaglandin (PG) production by the osteoblast was examined using osteoblast-rich populations of cells prepared from newborn rat calvaria. Bradykinin and serum, and to a lesser extent, thrombin, were all shown to stimulate PGE2 and 6-keto-PGF1 alpha (the hydration product of PGI2) secretion by the osteoblastic cells. Several inhibitors of prostanoid synthesis, dexamethasone, indomethacin, dazoxiben and nafazatrom, were tested for their effects on the calvarial cells. All inhibited PGE2 and PGI2 (the major arachidonic acid metabolites of these cells) production with half-maximal inhibition by all four substances occurring at approximately 10(-7) M. For dazoxiben and nafazatrom, this was in contrast to published results from experiments in vivo which have indicated that the compounds stimulated PGI2 production. Finally, since the osteoblast is responsive to bone-resorbing hormones, these were tested. Only epidermal growth factor (EGF) was shown to modify PG production. At early times EGF stimulated PGE2 release, however, the predominant effect of the growth factor was an inhibition of both PGE2 and PGI2 production by the osteoblastic cells. The present results suggest that the bone-resorbing hormones do not act to cause an increase in PG by the osteoblast and that any increase in PG production by these cells may be in response to vascular agents.  相似文献   

11.
Extracellular ATP is a pro-inflammatory mediator involved in the release of prostaglandin from articular chondrocytes, but little is known about its effects on intracellular signaling. ATP triggered the rapid release of prostaglandin E(2) (PGE(2)) by acting on P2Y(2) receptors in rabbit articular chondrocytes. We have explored the signaling events involved in this synthesis. ATP significantly increased arachidonic acid production, which involved the activation of the 85-kDa cytosolic phospholipase A(2) (cPLA(2)) but not a secreted form of PLA(2), as demonstrated by various PLA(2) inhibitors and translocation experiments. We also showed that ATP induced the phosphorylation of p38 and ERK1/2 mitogen-activated-protein kinases (MAPKs). Both PD98059, an inhibitor of the ERK pathway, and SB203580, an inhibitor of p38 MAPK, completely inhibited the ATP-induced release of PGE(2). Finally, dominant-negative plasmids encoding p38 and ERK transfected alone into the cells impaired the ATP-induced release of PGE(2) to about the same extent as both plasmids transfected together. These results suggest that PGE(2) production induced by ATP requires the activation of both ERK1/2 and p38 MAPKs. Thus, ATP acts via P2Y(2)-purine receptors to recruit cPLA(2) by activating both ERK1/2 and p38 MAPKs and stimulates the release of PGE(2) from articular chondrocytes.  相似文献   

12.
Derow A  Izydorczyk I  Kuhn A  Reeh PW  Petho G 《Life sciences》2007,81(25-26):1685-1693
The bradykinin-induced sensitization of cutaneous nociceptors to heat was previously shown to be abolished by cyclooxygenase blockade suggesting that endogenous prostaglandins exerted a heat-sensitizing action. The present study aimed at investigating the effects of exogenous prostaglandin E(2) (PGE(2)) and I(2) (PGI(2)) on noxious heat-evoked responses of rat cutaneous nociceptors. As neuropeptides including calcitonin gene-related peptide (CGRP) can be released from the peptidergic subset of heat-sensitive nociceptors, both the spike-generating (afferent) and CGRP-releasing (efferent) responses to heat stimulation were assessed by recording action potentials from single cutaneous C-fibers and measuring immunoreactive CGRP (iCGRP) release from isolated skin flaps, respectively. A combination of PGE(2) and PGI(2) (100 microM for both) unlike 10 microM PGE(2) or PGI(2) increased the number of spikes discharged during a noxious heat stimulus whereas the heat threshold remained unchanged. In contrast, 100 microM PGE(2) plus PGI(2) failed to increase the iCGRP release induced by noxious heat (47 degrees C) from the isolated rat skin. PGE(2) (100 microM), however, augmented the iCGRP-releasing effect of protons (pH 5.7). The adenylyl cyclase activator forskolin and the protein kinase C activator phorbol ester (PMA, 10 microM for both) facilitated heat-induced iCGRP release whereas increasing the intracellular Ca(2+) concentration by 10 microM ionomycin produced a desensitization of the response. In conclusion, PGE(2) plus PGI(2) can sensitize the afferent function of nociceptors in the rat skin, by increasing heat-induced spike discharge, but not the heat-induced efferent response i.e. iCGRP release. This discrepancy might reflect the differences between mechanisms of Na(+) channel-dependent spike generation and Ca(2+)-dependent neuropeptide release.  相似文献   

13.
To characterize the endothelial cell surface membrane glycoproteins that mediate thrombin stimulation of PGI2 synthesis by human umbilical vein endothelial cells (HUVEC), HUVEC were stimulated with thrombin in the presence or absence of different lectins. Of the lectins tested, only wheat germ agglutinin (WGA) inhibited thrombin-induced rises in cytosolic free calcium [( Ca2+]i), measured using Quin 2-loaded HUVEC and PGI2 production measured by radioimmunoassay. However, WGA by itself had no influence on baseline [Ca2+]i or PGI2 production and did not inhibit histamine-induced rises in [Ca2+]i. The inhibition of thrombin-induced rises in [Ca2+]i and PGI2 production by WGA was dose dependent, with half-maximal inhibition occurring at 2 micrograms/ml. WGA also inhibited thrombin-induced release of 3H-arachidonic acid. These effects of WGA were reversed by N-acetyl-glucosamine (GlcNAc) and N-acetyl-neuraminic acid, which bind specifically to WGA, but not by unrelated sugars. Succinylated WGA (succ-WGA), a chemically modified derivative of WGA that binds to GlcNAc but, unlike native WGA, not to sialoglycoproteins, did not inhibit thrombin-induced rises in [Ca2+]i and PGI2 production. These results suggest that thrombin induces rises in [Ca2+]i and PGI2 production by interacting with an endothelial surface membrane sialoglycoprotein.  相似文献   

14.
Prostaglandin E2 (PGE2) has previously been shown to inhibit sympathetic neurotransmission in different organs and species. Based on this inhibitory effect and on its reversal by cyclo-oxygenase inhibitors, PGE2 has been claimed to be a physiological modulator of in vivo release of norepinephrine (NE) from sympathetic nerves. It is now recognized that prostacyclin (PGI2) is the main cyclo-oxygenase product in the heart. We therefore addressed the question whether PGI2, within the same preparation, is formed in increased amounts during sympathetic nerve stimulation and has neuromodulatory activity. The effluent from isolated rabbit hearts subjected to sympathetic nerve stimulation or to infusion of NE or adenosine (ADO) was collected, and its content of PGE2 and 6-keto-PGF1 alpha (dehydration product of PGI2) was analyzed using gas chromatography/mass spectrometry, operated in the negative ion/chemical ionization mode. Other hearts were infused with PGI2 and nerve stimulation induced outflow of endogenous NE into the effluent was analyzed using HPLC with electrochemical detection. Nerve stimulation at 5 or 10 Hz (before but not after adrenergic receptor blockade), as well as infusion of NE (10(-6)-10(-5)M) or ADO (10(-4)M) increased the cardiac outflow of 6-keto-PGF1 alpha. Basal and nerve stimulation induced efflux of 6-keto-PGF1 alpha was approximately 5 times higher than the corresponding efflux of PGE2. PGI2 dose-dependently inhibited the outflow of NE from sympathetically stimulated hearts, the inhibition at 10(-6)M being approximately 40%. On the basis of these observations we propose that PGI2 is a more likely candidate than PGE2 as a potential modulator of neurotransmission in cardiac tissue in vivo.  相似文献   

15.
Sjursen W  Brekke OL  Johansen B 《Cytokine》2000,12(8):1189-1194
The involvement of cytosolic phospholipase A(2)(cPLA(2)) and secretory non-pancreatic PLA(2)(npPLA(2)) in release of arachidonic acid (AA) preceding eicosanoid formation in the human keratinocyte cell line HaCaT was examined. Interleukin 1beta (IL-1beta) and tumour necrosis factor-alpha (TNF), phorbol myristate acetate (PMA) and calcium ionophore A(23187)increased the extracellular AA release, and stimulated eicosanoid synthesis as determined by HPLC analysis. The main metabolites after stimulation with IL-1beta, PMA or A(23187)were PGE(2), an unidentified PG and LTB(4), while TNF stimulated HETE-production. Both cPLA(2)and npPLA(2)message and enzyme activity were detected in unstimulated HaCaT cells. IL-1beta, PMA and TNF increased both cPLA(2)enzyme activity and expression, but did not lead to any increase in npPLA(2)expression or activity. The selective npPLA(2)inhibitors LY311727 and 12-epi-scalaradial, or the cPLA(2)inhibitor arachidonyl trifluoro methyl ketone (AACOCF(3)) reduced IL-1beta-induced eicosanoid production in a concentration dependent manner. The results presented strongly suggest that both cPLA(2)and npPLA(2)contribute to the long-term generation of AA preceding eicosanoid production in differentiated, human keratinocytes. Inhibitors against npPLA2 or cPLA2 enzymes should be useful in treating inflammatory skin diseases, such as psoriasis.  相似文献   

16.
J McHowat  P J Kell  H B O'Neill  M H Creer 《Biochemistry》2001,40(49):14921-14931
Platelet activating factor (PAF) is a potent lipid autocoid that is rapidly synthesized and presented on the surface of endothelial cells following thrombin stimulation. PAF production may occur via de novo synthesis or by the combined direct action of phospholipase A(2) (PLA(2)) and acetyl-CoA:lyso-PAF acetyltransferase or via the remodeling pathway. This study was undertaken to define the role of PLA(2) and plasmalogen phospholipid hydrolysis in PAF synthesis in thrombin-treated human umbilical artery endothelial cells (HUAEC). Basal PLA(2) activity in HUAEC was primarily found to be Ca(2+)-independent (iPLA(2)), membrane-associated, and selective for arachidonylated plasmenylcholine substrate. Thrombin stimulation of HUAEC resulted in a preferential 3-fold increase in membrane-associated iPLA(2) activity utilizing plasmenylcholine substrates with a minimal increase in activity with alkylacyl glycerophospholipids. No change in cystolic iPLA(2) activity in thrombin-stimulated HUAEC was observed. The thrombin-stimulated activation of iPLA(2) and associated hydrolysis of plasmalogen phospholipids was accompanied by increased levels of arachidonic acid (from 1.1 +/- 0.1 to 2.8 +/- 0.1%) and prostacyclin release (from 38 +/- 12 to 512 +/- 24%) as well as an increased level of production of lysoplasmenylcholine (from 0.6 +/- 0.1 to 2.1 +/- 0.3 nmol/mg of protein), lysophosphatidylcholine (from 0.3 +/- 0.1 to 0.6 +/- 0.1 nmol/mg of protein), and PAF (from 790 +/- 108 to 3380 +/- 306 dpm). Inhibition of iPLA(2) with bromoenol lactone resulted in inhibition of iPLA(2) activity, plasmalogen phospholipid hydrolysis, production of choline lysophospholipids, and PAF synthesis. These data indicate that PAF production requires iPLA(2) activation in thrombin-stimulated HUAEC and may occur through the CoA-independent transacylase remodeling pathway rather than as a direct result of the PLA(2)-catalyzed hydrolysis of membrane alkylacyl glycerophosphocholine.  相似文献   

17.
Proteinase-activated receptor-1 (PAR1), upon activation, exerts prostanoid-dependent gastroprotection, and increases prostaglandin E(2) (PGE(2)) release through cyclooxygenase-2 (COX-2) upregulation in rat gastric mucosal epithelial RGM1 cells. However, there is a big time lag between the PAR1-triggered PGE(2) release and COX-2 upregulation in RGM1 cells; that is, the former event takes 18 h to occur, while the latter rapidly develops and reaches a plateau in 6 h. The present study thus aimed at clarifying mechanisms for the delay of PGE(2) release after PAR1 activation in RGM1 cells. Although a PAR1-activating peptide, TFLLR-NH(2), alone caused PGE(2) release at 18 h, but not 6 h, TFLLR-NH(2) in combination with arachidonic acid dramatically enhanced PGE(2) release even for 1-6 h. TFLLR-NH(2) plus linoleic acid caused a similar rapid response. CP-24879, a Δ(5)/Δ(6)-desaturase inhibitor, abolished the PGE(2) release induced by TFLLR-NH(2) plus linoleic acid, but not by TFLLR-NH(2) alone. The TFLLR-NH(2)-induced PGE(2) release was not affected by inhibitors of cytosolic phospholipase A(2) (cPLA(2)), Ca(2+)-independent PLA(2) (cPLA(2)) or secretory PLA(2) (sPLA(2)), but was abolished by their mixture or a pan-PLA(2) inhibitor. Among PLA(2) isozymes, mRNA of group IIA sPLA(2) (sPLA(2)-IIA) was upregulated following PAR1 stimulation for 6-18 h, whereas protein levels of PGE synthases were unchanged. These data suggest that the delay of PGE(2) release after COX-2 upregulation triggered by PAR1 is due to the poor supply of free arachidonic acid at the early stage in RGM1 cells, and that plural isozymes of PLA(2) including sPLA(2)-IIA may complementarily contribute to the liberation of free arachidonic acid.  相似文献   

18.
In order to ascertain the role of phospholipase A2 (PLA2) in the release of arachidonic acid for eicosanoid biosynthesis, we have characterized a Ca2+-dependent PLA2 from P388D1 cells, evaluated inhibitors of its activity, and correlated the effects of these inhibitors on prostaglandin (PG) E2 production in the intact cell. The Ca2+-dependent PLA2 has little preference for the polar head group or sn-2 fatty acid of phospholipids, and we have now found that it will hydrolyze 1-alkyl,2-acyl phospholipids, but it does not show a preference for this substrate over other phospholipids. Inhibitor studies with the Ca2+-dependent PLA2 have shown that arachidonic acid is an effective inhibitor. The analogs of natural fatty acids, eicosatetraynoic acid and octadecyleicosaynoic acid, were ineffective as inhibitors of the P388D1 PLA2. However, 7,7-dimethyl-5,8-eicosadienoic acid was as effective an inhibitor (IC50 = 16 microM) as arachidonic acid. Manoalide and its analog, manoalogue, were found to be good inhibitors of the P388D1 PLA2 (IC50 = 16 and 26 microM, respectively). The irreversible inhibitor of the extracellular PLA2, p-bromophenacyl bromide, was a very poor inhibitor of the P388D1 PLA2, apparent IC50 = 500-600 microM. Quinacrine was also ineffective as an inhibitor as was the cyclooxygenase inhibitor indomethacin. On the cellular level, the P388D1 cells respond to various stimuli to produce PGD2 and PGE2 as the major cyclooxygenase products with minor production of PGI2 and thromboxane A2. Similar arachidonic acid metabolite profiles were seen for calcium ionophore A23187, melittin, and platelet-activating factor. Manoalide, manoalogue, and 7,7-dimethyl-5,8-eicosadienoic acid, effective inhibitors of the isolated PLA2, inhibited PGE2 production in intact P388D1 cells 40-85% in the concentration range studied. In contrast, p-bromophenacyl bromide, which is ineffective as an inhibitor of the P388D1 PLA2, did not significantly effect PGE2 production in the concentration ranges used. These results demonstrate that there may be important differences between the intracellular P388D1 PLA2 and the more commonly studied extracellular forms of PLA2. These differences are also observed in the intact cell studies and emphasize the need for the evaluation of inhibitors both in vitro and in vivo using the isolated enzyme and intact cell. This is the first example of studies aimed at correlating the inhibition of a purified intracellular PLA2 with inhibition of prostaglandin production in the intact cell from which it is derived.  相似文献   

19.
Prostaglandin E(2) (PGE(2)) stimulated leptin release over a 24-h incubation of mouse adipose tissue in primary culture. The maximal stimulation of leptin release was seen with 100 nm PGE(2). The role of endogenous eicosanoids in the regulation of lipolysis and leptin formation was examined in the presence of NS-398, a selective cyclooxygenase-2 inhibitor. NS-398 at a concentration of 5 microm enhanced lipolysis by 30% and lowered leptin release by 24%. This concentration of NS-398 almost completely inhibited PGE(2) formation. An inhibition of basal lipolysis by PGE(2) or N(6)-cyclopentyladenosine (CPA) was seen in the presence but not in the absence of NS-398. CPA, whose receptor, like that of PGE(2) inhibits cyclic AMP accumulation in adipose tissue, also enhanced leptin release. These data indicate that PGE2 can stimulate leptin release and suggest that endogenous eicosanoids affect both lipolysis and leptin formation by mouse adipose tissue.  相似文献   

20.
Inflammatory mediators can both enhance or inhibit canine airway reactivity. PGE2 and PGI2 in general are inhibitory, interfering with release of acetylcholine and with responses to bronchoconstrictors. These prostaglandins may be more effective against agonists that open voltage-dependent Ca2+ channels to induce Ca2+ influx and contraction compared with those agonists that release internal Ca2+. Other mediators are excitatory: histamine, PGD2, thromboxane A2 (TxA2), and leukotrienes (LT) C4, D4, and E4. In canine airway only histamine and TxA2 have effects in the absence of indomethacin, i.e., in the presence of the large amounts of PGE2 and PGI2 produced in vitro LTs are ineffective. Effects of TxA2 and histamine may be potentiated if the synthesis of these inhibitory PGs is inhibited. Whether histamine or TxA2 normally promote synthesis and release of PGE2 and PGI2 in a kind of homeostasis remains to be explored. It is also unclear whether pre- as well as post-junctional TxA2 receptors exist and have different pharmacological sensitivities to antagonists. LTC4 and LTD4 also constrict canine bronchi but only when PGE2 and PGI2 synthesis is blocked and, again, whether this is a result of LT-induced release of inhibitory mediators is unknown. The concept that airway responsiveness can be caused by turning off PGE2 and PGI2 production and turning on TxA2 or LT production (or unmasking their actions) needs further exploration. Our recent data suggest that such a mechanism may explain ozone-induced responsiveness in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号