首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent accumulating evidence revealed that planarian central nervous system (CNS) has numerous functional domains distinguished by a large number of neural markers, suggesting that primitive animals which developed CNS already had the framework of the brain development. It is of interest to investigate genes which have been acquired at an early stage of evolution for brain pattern formation. One such candidate is FoxG1 (BF-1), specifically expressed in the telencephalon and implicated in brain development. We identified a FoxG1 (BF-1) homolog gene in planarians (DjFoxG). We also identified a FoxD class gene, DjFoxD. DjFoxG is expressed in the body and brain, with strong expression in the mesenchyme surrounding the gut. During regeneration, an intense anterior signal is detected, but this is not restricted to the head. DjFoxD is expressed in the mid-apex of the head, between the two lobes of the brain. Strong expression was detected in the mid-anterior blastema. Thus, FoxG and FoxD homologs do exist in planarians, but are regulated differently than those in vertebrates.  相似文献   

3.
4.
5.
Cell proliferation occurs in the brain of fish throughout life. This mitotic activity contributes new neurons to some brain subdivisions, suggesting potential for plasticity in neural development. Recently we found that the telencephalon in salmonids (salmon, trout) is significantly reduced in fish reared in hatcheries compared to wild fish, and that these differences resulted in part from rearing conditions. Here, we describe localized areas of cell proliferation in the telencephalon of juvenile coho salmon (Oncorhynchus kisutch) and begin to explore whether mitotic activity in these areas is sensitive to environmental conditions. Using the 5-bromo-2'-deoxyuridine (BrdU) cell birth-dating technique, we localized proliferating cells in the telencephalon to three distinct zones (proliferation zones 1a, 1b, and 2). We measured the volumes of these zones and showed that they grew at different rates relative to body size. We also found that variation in environmental rearing conditions altered the density of BrdU-labeled cells in proliferation zone 2, but not in zones 1a or 1b. However, this change in mitotic activity did not generate a difference in telencephalon size. These results suggest that environmental conditions, and associated changes in swimming activity or social structure, may influence rates of cell proliferation in the fish forebrain.  相似文献   

6.
Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having "side population" phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.  相似文献   

7.
8.
9.
Erythropoietin (Epo) and its receptor (EpoR), critical for erythropoiesis, are expressed in the nervous system. Prior to death in utero because of severe anemia EpoR-null mice have fewer neural progenitor cells, and differentiated neurons are markedly sensitive to hypoxia, suggesting that during development Epo stimulates neural cell proliferation and prevents neuron apoptosis by promoting oxygen delivery to brain or by direct interaction with neural cells. Here we present evidence that neural progenitor cells express EpoR at higher levels compared with mature neurons; that Epo stimulates proliferation of embryonic neural progenitor cells; and that endogenous Epo contributes to neural progenitor cell proliferation and maintenance. EpoR-null mice were rescued with selective EpoR expression driven by the endogenous EpoR promoter in hematopoietic tissue but not in brain. Although these mice exhibited normal hematopoiesis and erythrocyte production and survived to adulthood, neural cell proliferation and viability were affected. Embryonic brain exhibited increased neural cell apoptosis, and neural cell proliferation was reduced in the adult hippocampus and subventricular zone. Neural cells from these animals were more sensitive to hypoxia/glutamate neurotoxicity than normal neurons in culture and in vivo. These observations demonstrate that endogenous Epo/EpoR signaling promotes cell survival in embryonic brain and contributes to neural cell proliferation in adult brain in regions associated with neurogenesis. Therefore, Epo exerts extra-hematopoietic function and contributes directly to brain development, maintenance, and repair by promoting cell survival and proliferation independent of insult, injury, or ischemia.  相似文献   

10.
To directly test the requirement for hedgehog signaling in the telencephalon from early neurogenesis, we examined conditional null alleles of both the Sonic hedgehog and Smoothened genes. While the removal of Shh signaling in these animals resulted in only minor patterning abnormalities, the number of neural progenitors in both the postnatal subventricular zone and hippocampus was dramatically reduced. In the subventricular zone, this was partially attributable to a marked increase in programmed cell death. Consistent with Hedgehog signaling being required for the maintenance of stem cell niches in the adult brain, progenitors from the subventricular zone of floxed Smo animals formed significantly fewer neurospheres. The loss of hedgehog signaling also resulted in abnormalities in the dentate gyrus and olfactory bulb. Furthermore, stimulation of the hedgehog pathway in the mature brain resulted in elevated proliferation in telencephalic progenitors. These results suggest that hedgehog signaling is required to maintain progenitor cells in the postnatal telencephalon.  相似文献   

11.
12.
13.
The etiology of radiation-induced cerebrovascular rarefaction remains unknown. In the present study, we examined the effect of whole-brain irradiation on endothelial cell (EC) proliferation/apoptosis and expression of various angiogenic factors in rat brain. F344 × BN rats received either whole-brain irradiation (a single dose of 10 Gy γ rays) or sham irradiation and were maintained for 4, 8 and 24 h after irradiation. Double immunofluorescence staining was employed to visualize EC proliferation/apoptosis in brain. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), endothelial-specific receptor tyrosine kinase (Tie-2), and Ang-2 in brain were determined by real-time RT-PCR and immunofluorescence staining. A significant reduction in CD31-immunoreactive cells was detected in irradiated rat brains compared with sham-irradiated controls. Whole-brain irradiation significantly suppressed EC proliferation and increased EC apoptosis. In addition, a significant decrease in mRNA and protein expression of VEGF, Ang-1 and Tie-2 was observed in irradiated rat brains. In contrast, whole-brain irradiation significantly upregulated Ang-2 expression in rat brains. The present study provides novel evidence that whole-brain irradiation differentially affects mRNA and protein expression of VEGF, Ang-1, Tie-2 and Ang-2. These changes are closely associated with decreased EC proliferation and increased EC apoptosis in brain.  相似文献   

14.
Arden KC 《Molecular cell》2004,14(4):416-418
Two recent reports reveal new roles for FoxO proteins in cell proliferation and tumorigenesis. Seoane and colleagues show that FoxO proteins play key roles in the TGFbeta-dependent activation of p21Cip1 by partnering with Smad3 and Smad4. FoxG1, a protein from a distinct Fox subfamily, binds FoxO/Smad complexes and blocks p21Cip1 expression. These interactions establish a relationship between the PI3K pathway, FoxG1, and the TGFbeta/Smad pathways. The second report identifies IkappaB kinase as a negative regulator of FoxO proteins, suggesting a mechanism for relieving negative regulation of cell cycle and promoting tumor cell proliferation.  相似文献   

15.
16.
17.
18.
Reparative proliferation and neurogenesis in the brain integrative centers after mechanical eye injury in an adult trout Oncorhynchus mykiss have been studied. We have found that proliferation and neurogenesis in proliferative brain regions, the cerebellum, and the optic tectum were significantly enhanced after the eye injury. The cerebellum showed a significant increase in the proliferative activity of the cells of the dorsal proliferative zone and parenchymal cells of the molecular and granular layers. One week after the injury, PCNA-positive radial glia cells have been identified in the tectum. We have found for the first time that the eye trauma resulted in the development of local clusters of undifferentiated cells forming so called neurogenic niches in the tectum and cerebellum. The differentiation of neuronal cells detected by labeling cells with antibodies against the protein HuC/D occurred in the proliferative zones of the telencephalon, the optic tectum, cerebellum, and medulla of a trout within 2 days after the injury. We have shown that the HuC/D expression is higher in the proliferative brain regions than in the definitive neurons of a trout. In addition, we have examined cell proliferation, migration, and apoptosis caused by the eye injury in the contra- and ipsilateral optic nerves and adjacent muscle fibers 2 days after the trauma. The qualitative and quantitative assessment of proliferation and apoptosis in the cells of the optic nerve of a trout has been made using antibodies against PCNA and the TUNEL method.  相似文献   

19.
20.
Transducin-like enhancer of split-1 (TLE1) plays a critical role in the regulation of neurogenesis by inhibiting the differentiation of neural progenitor cells into neurons. Although TLE1 is also expressed highly in the postnatal brain and through adulthood, its role in postmitotic neurons is not clear. Using cultures of cerebellar granule neurons, we show that expression of TLE1 is reduced in neurons primed to die. Reestablishment of elevated TLE1 levels by ectopic expression protects neurons from death, whereas suppression of TLE1 expression in otherwise healthy neurons induces cell death. These results show that TLE1 is necessary for the maintenance of neuronal survival. Experiments using pharmacological inhibitors as well as expression of point mutants indicate that phosphorylation of TLE1 by casein kinase-2 (CK2) at Ser-239 and Ser-253 is necessary for its survival-promoting activity. TLE1-mediated survival is also inhibited by pharmacological inhibition of PI3K-Akt signaling but not by inhibitors of Raf-MEK-ERK signaling or other molecules, including histone deacetylases, calcium calmodulin kinase, or CK1. The survival-promoting activity of TLE1 depends critically on interaction with FoxG1, another protein involved in the regulation of neurogenesis and shown previously to promote survival of postmitotic neurons. Likewise, the ability of FoxG1 to promote neuronal survival depends on TLE1. Taken together, our study demonstrates that TLE1 cooperates with FoxG1 to promote neuronal survival in a CK2- and PI3K-Akt-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号