首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《遗传学报》2022,49(1):54-62
The global “myopia boom” has raised significant international concerns. Despite a higher myopia prevalence in Asia, previous large-scale genome-wide association studies (GWASs) were mostly based on European descendants. Here, we report a GWAS of spherical equivalent (SE) in 1852 Chinese Han individuals with extreme SE from Guangzhou (631 < ?6.00D and 574 > 0.00D) and Wenzhou (593 < ?6.00D and 54 > ?1.75D), followed by a replication study in two independent cohorts with totaling 3538 East Asian individuals. The discovery GWAS and meta-analysis identify three novel loci, which show genome-wide significant associations with SE, including 1q25.2 FAM163A, 10p11.22 NRP1/PRAD3, and 10p11.21 ANKRD30A/MTRNR2L7, together explaining 3.34% of SE variance. 10p11.21 is successfully replicated. The allele frequencies of all three loci show significant differences between major continental groups (P < 0.001). The SE reducing (more myopic) allele of rs10913877 (1q25.2 FAM163A) demonstrates the highest frequency in East Asians and much lower frequencies in Europeans and Africans (EAS = 0.60, EUR = 0.20, and AFR = 0.18). The gene-based analysis additionally identifies three novel genes associated with SE, including EI24, LHX5, and ARPP19. These results provide new insights into myopia pathogenesis and indicate the role of genetic heterogeneity in myopia epidemiology among different ethnicities.  相似文献   

2.
A 2275-marker genetic map of rice (Oryza sativa L.) covering 1521.6 cM in the Kosambi function has been constructed using 186 F2 plants from a single cross between the japonica variety Nipponbare and the indica variety Kasalath. The map provides the most detailed and informative genetic map of any plant. Centromere locations on 12 linkage groups were determined by dosage analysis of secondary and telotrisomics using > 130 DNA markers located on respective chromosome arms. A limited influence on meiotic recombination inhibition by the centromere in the genetic map was discussed. The main sources of the markers in this map were expressed sequence tag (EST) clones from Nipponbare callus, root, and shoot libraries. We mapped 1455 loci using ESTs; 615 of these loci showed significant similarities to known genes, including single-copy genes, family genes, and isozyme genes. The high-resolution genetic map permitted us to characterize meiotic recombinations in the whole genome. Positive interference of meiotic recombination was detected both by the distribution of recombination number per each chromosome and by the distribution of double crossover interval lengths.  相似文献   

3.
 Seven F2 families of faba bean descendent from plants trisomic for chromosomes 3, 4, 5 and 6 were analyzed for isozyme markers and two of these were also studied for morphological and RAPD markers and seed-protein genes. Linkage analysis revealed 14 linkage groups, 8 of which were unambiguously assigned to specific chromosomes. Several QTLs for seed weight were identified, the most important of which, located on chromosome 6, explained approximately 30% of the total phenotypic variation. Comparison of results from Vicia faba with the maps of the related species Pisum sativum L. and Cicer arietinum L. revealed one possible new case of linkage conservation. A composite linkage analysis based on 42 markers analyzed in this and previous studies, where line Vf 6 was also used as the female parental, allowed the new assignment of previously independent linkage groups and/or markers to specific chromosomes. Thus, the number of linkage groups was reduced to 13, each comprising an increased number of markers. No contradictory results were detected, indicating the suitability of the statistical procedure and methodology used so far in the development of the map of this species. Received: 30 April 1998 / Accepted: 24 August 1998  相似文献   

4.
Significant segregation of spikelet fertility occurred in an F2 population derived from a spikelet fertility-normal F1 hybrid produced by a cross between Palawan, a japonica variety, and IR42, an indica variety. To identify factors controlling the fertility segregation, we used 104 RFLP markers covering all 12 rice chromosomes to investigate the association of spikelet fertility and marker segregation. We found that the segregation of two sets of gene pairs was significantly (P < 0.001) associated with fertility segregation. The first pair of genes was linked to RFLP marker RG778 on chromosome 12 and RFLP markers RG690/RG369 on chromosome 1. A significant reduction in fertility was observed when the plants were homozygote at RG778 with the indica allele as well as homozygote at RG690/RG369 with the japonica allele. The second pair of genes was linked to RG218 on chromosome 12 and RG650 on chromosome 7, respectively. The recombinant homozygote at these two loci showed a significant reduction on spikelet fertility. The non-allelic interaction effect was further modified by a gene linked to RG778, resulting in even lower fertility. The results of this study provides the first evidence of chromosomal localization of sporophytic sterility genes whose interaction can result in a reduction of spikelet fertility in the F2 derived from fertility-normal F1.  相似文献   

5.
 Domesticated rice differs from the wild progenitor in large arrays of morphological and physiological traits. The present study was conducted to identify the genetic factors controlling the differences between cultivated rice and its wild progenitor, with the intention to assess the genetic basis of the changes associated with the processes of rice domestication. A total of 19 traits, including seven qualitative and 12 quantitative traits, that are related to domestication were scored in an F2 population from a cross between a variety of the Asian cultivated rice (Oryza sativa) and an accession of the common wild rice (O. rufipogon). Loci controlling the inheritance of these traits were determined by making use of a molecular linkage map consisting of 348 molecular-marker loci (313 RFLPs, 12 SSRs and 23 AFLPs) based on this F2 population. All seven qualitative traits were each controlled by a single Mendelian locus. Analysis of the 12 quantitative traits resolved a total of 44 putative QTLs with an average of 3.7 QTLs per trait. The amount of variation explained by individual QTLs ranged from a low of 6.9% to a high of 59.8%, and many of the QTLs accounted for more than 20% of the variation. Thus, genes of both major and minor effect were involved in the differences between wild and cultivated rice. The results also showed that most of the genetic factors (qualitative or QTLs) controlling the domestication-related traits were concentrated in a few chromosomal blocks. Such a clustered distribution of the genes may provide explanations for the genetic basis of the “domestication syndrome” observed in evolutionary studies and also for the “linkage drag” that occurs in many breeding programs. The information on the genetic basis of some desirable traits possessed by the wild parent may also be useful for facilitating the utilization of these traits in rice-breeding programs. Received: 1 June 1998 / Accepted: 28 July 1998  相似文献   

6.
For many complex traits, genetic variants have been found associated. However, it is still mostly unclear through which downstream mechanism these variants cause these phenotypes. Knowledge of these intermediate steps is crucial to understand pathogenesis, while also providing leads for potential pharmacological intervention. Here we relied upon natural human genetic variation to identify effects of these variants on trans-gene expression (expression quantitative trait locus mapping, eQTL) in whole peripheral blood from 1,469 unrelated individuals. We looked at 1,167 published trait- or disease-associated SNPs and observed trans-eQTL effects on 113 different genes, of which we replicated 46 in monocytes of 1,490 different individuals and 18 in a smaller dataset that comprised subcutaneous adipose, visceral adipose, liver tissue, and muscle tissue. HLA single-nucleotide polymorphisms (SNPs) were 10-fold enriched for trans-eQTLs: 48% of the trans-acting SNPs map within the HLA, including ulcerative colitis susceptibility variants that affect plausible candidate genes AOAH and TRBV18 in trans. We identified 18 pairs of unlinked SNPs associated with the same phenotype and affecting expression of the same trans-gene (21 times more than expected, P<10(-16)). This was particularly pronounced for mean platelet volume (MPV): Two independent SNPs significantly affect the well-known blood coagulation genes GP9 and F13A1 but also C19orf33, SAMD14, VCL, and GNG11. Several of these SNPs have a substantially higher effect on the downstream trans-genes than on the eventual phenotypes, supporting the concept that the effects of these SNPs on expression seems to be much less multifactorial. Therefore, these trans-eQTLs could well represent some of the intermediate genes that connect genetic variants with their eventual complex phenotypic outcomes.  相似文献   

7.
Weedy rice (WR, Oryza sativa L. f. spontanea) is a noxious agricultural weed, infesting rice fields worldwide and causing tremendous yield losses of cultivated rice. However, little is known about the relationship between genetic diversity and distribution of WR populations across a wide latitudinal gradient, in addition to its reasons for genetic differentiation. To determine the distribution of genetic diversity and differentiation, we analyzed 20 WR populations collected from wide geographic ranges of rice-planting regions across Northeast, Jiangsu and Guangdong provinces of China, and Sri Lanka, based on 20 simple sequence repeat loci. Our results indicated a significant negative correlation (R = 0.84, P < 0.01) between genetic diversity and latitudinal locations of WR populations. The Mantel test (R2 = 0.49, P < 0.01) showed distinct groupings of WR populations from different rice-planting regions, fitting an isolation-by-distance pattern. In addition, the STRUCTURE analysis and principal coordinates (PCoA) analysis indicated considerable genetic differentiation of WR from different rice-planting regions, which was associated with the types of co-occurring rice cultivars. We conclude based on the above results that WR genetic diversity is affected by the latitudes where WR populations are located. The genetic differentiation of WR populations is determined by their spatial distances and co-occurring rice cultivars. Such a pattern of genetic diversity and differentiation across different regions may facilitate the design of effective WR control, in addition to understanding adaptive evolution of this weed.  相似文献   

8.
9.
Summary Use of chromosomal markers can accelerate genetic progress for quantitative traits in pedigree selection programs by providing early information on Mendelian segregation effects for individual progeny. Potential effectiveness of selection using markers is determined by the amount of additive genetic variance traced from parents to progeny by the markers. Theoretical equations for the amount of additive genetic variance associated with a marker were derived at the individual level and for a segregating population in joint linkage equilibrium. Factors considered were the number of quantitative trait loci linked to the marker, their individual effects, and recombination rates with the marker. Subsequently, the expected amount of genetic variance associated with a marker in a segregating population was derived. In pedigree selection programs in segregating populations, a considerable fraction of the genetic variance on a chromosome is expected to be associated with a marker located on that chromosome. For an average chromosome in the bovine, this fraction is approximately 40% of the Mendelian segregation variance contributed by the chromosome. The effects of interference and position of the marker on this expectation are relative small. Length of the chromosome has a large effect on the expected variance. Effectiveness of MAS is, however, greatly reduced by lack of polymorphism at the marker and inaccuracy of estimation of chromosome substitution effects. The size of the expected amount of genetic variance associated with a chromosomal marker indicates that, even when the marker is not the active locus, large chromosome substitution effects are not uncommon in segregating populations.  相似文献   

10.
Green rice leafhopper (GRH, Nephotettix cincticeps Uhler) is one of the insect pests that damage cultivated rice in East Asia. GRH also transmits viruses such as rice dwarf virus. The mortality of GRH nymphs is high in rice cultivar Shingwang, indicating that Shingwang is resistant to GRH. Genetic analyses were performed to map GRH resistance in Shingwang using F2 and F3 populations derived from a cross between a GRH-resistant near-isogenic line (NIL-IS60) from Shingwang and recurrent parent Ilpum. Resistance to GRH in Shingwang was found to be controlled by a single dominant gene (Grh1) mapped within an approximately 670-kb region between 8.10 and 8.77 Mb on the short arm of chromosome 5. Genotypes with three simple sequence repeat markers (RM18166, RM516, and RM18171) and one indel marker (Indel 15040) co-segregated with GRH resistance controlled by the Grh1 locus. A detailed map of the Grh1 locus will facilitate marker-assisted selection of resistance to GRH in rice breeding.  相似文献   

11.
In this paper, the theory of joint mapping of quantitative trait loci is extended to F2 populations. Two independent regression equations, related to the additive and dominance effects respectively, are derived. Therefore, there are three alternative strategies for mapping QTLs, called additive-based mapping (ABM), dominance-based mapping (DBM) and additive-dominance-based mapping (ADBM). Simulation results have shown that ADBM is the most appropriate in most situations.  相似文献   

12.
Maize (Zea mays L.) breeders have used several genetic-statistical models to study the inheritance of quantitative traits. These models provide information on the importance of additive, dominance, and epistatic genetic variance for a quantitative trait. Estimates of genetic variances are useful in understanding heterosis and determining the response to selection. The objectives of this study were to estimate additive and dominance genetic variances and the average level of dominance for an F2 population derived from the B73 x Mo17 hybrid and use weighted least squares to determine the importance of digenic epistatic variances relative to additive and dominance variances. Genetic variances were estimated using Design III and weighted least squares analyses. Both analyses determined that dominance variance was more important than additive variance for grain yield. For other traits, additive genetic variance was more important than dominance variance. The average level of dominance suggests either overdominant gene effects were present for grain yield or pseudo-overdominance because of linkage disequilibrium in the F2 population. Epistatic variances generally were not significantly different from zero and therefore were relatively less important than additive and dominance variances. For several traits estimates of additive by additive epistatic variance decreased estimates of additive genetic variance, but generally the decrease in additive genetic variance was not significant.  相似文献   

13.
Novel coronavirus disease 2019 (COVID-19) is associated with a hypercoagulable state, characterized by abnormal coagulation parameters and by increased incidence of cardiovascular complications. With this study, we aimed to investigate the activation state and the expression of transmembrane proteins in platelets of hospitalized COVID-19 patients. We investigated transmembrane proteins expression with a customized mass cytometry panel of 21 antibodies. Platelets of 8 hospitalized COVID-19 patients not requiring intensive care support and without pre-existing conditions were compared to platelets of healthy controls (11 donors) with and without in vitro stimulation with thrombin receptor-activating peptide (TRAP). Mass cytometry of non-stimulated platelets detected an increased surface expression of activation markers P-Selectin (0.67 vs. 1.87 median signal intensity for controls vs. patients, p = 0.0015) and LAMP-3 (CD63, 0.37 vs. 0.81, p = 0.0004), the GPIIb/IIIa complex (4.58 vs. 5.03, p < 0.0001) and other adhesion molecules involved in platelet activation and platelet–leukocyte interactions. Upon TRAP stimulation, mass cytometry detected a higher expression of P-selectin in COVID-19 samples compared to controls (p < 0.0001). However, we observed a significantly reduced capacity of COVID-19 platelets to increase the expression of activation markers LAMP-3 and P-Selectin upon stimulation with TRAP. We detected a hyperactivated phenotype in platelets during SARS-CoV-2 infection, consisting of highly expressed platelet activation markers, which might contribute to the hypercoagulopathy observed in COVID-19. In addition, several transmembrane proteins were more highly expressed compared to healthy controls. These findings support research projects investigating antithrombotic and antiplatelet treatment regimes in COVID-19 patients, and provide new insights on the phenotypical platelet expression during SARS-CoV-2 infection.Subject terms: Mechanisms of disease, Viral infection  相似文献   

14.
Hybridization and introgression can play an important role in genetic differentiation and adaptive evolution of plant species. For example, a conspecific feral species may frequently acquire new alleles from its coexisting crops via introgression. However, little is known about this process. We analyzed 24 weedy rice (Oryza sativa f. spontanea) populations and their coexisting rice cultivars from northern Italy to study their genetic differentiation, outcrossing, and introgression based on microsatellite polymorphisms. A total of 576 maternal plants representing 24 weedy populations were used to estimate their genetic differentiation, and 5,395 progeny (seedlings) derived from 299 families of 15 selected populations were included to measure outcrossing rates. Considerable genetic differentiation (F st = 0.26) was detected among weedy rice populations, although the differentiation was not associated with the spatial pattern of the populations. Private alleles (28%) were identified in most populations that exhibited a multiple cluster assignments, indicating stronger genetic affinities of some weedy populations. Outcrossing rates were greatly variable and positively correlated (R 2 = 0.34, P = 0.02) with the private alleles of the corresponding populations. Paternity analysis suggested that ~15% of paternal specific alleles, a considerable portion of which was found to be crop-specific, were acquired from the introgression of the coexisting rice cultivars. Frequent allelic introgression into weedy populations resulting from outcrossing with nearby cultivars determines the private alleles of local feral populations, possibly leading to their genetic differentiation. Introgression from a crop may play an important role in the adaptive evolution of feral populations.  相似文献   

15.
The persistence of transgenes in wild populations may cause unintended ecological consequences, and the possibility of transgenes' persistence and introgression is dependent on fitness performance of transgenic crop–wild hybrids. To investigate the effects of transgene and genotype × environment on the fitness of crop–wild rice hybrids, a total of 11 cross‐combination progenies between insect‐resistant transgene (CpTI and Bt/CpTI) rice lines and wild rice (Oryza rufipogon) were evaluated at different sites with contrasting insect treatments. The results showed that fitness performance varied between transgenic hybrids having different wild parents and under different environmental conditions, indicating that fitness effects of transgenes on hybrid progenies depend heavily on the genetic background of recipient plants and growing environment. Significant fitness advantages conferred by transgenes were found only in some hybrids under high insect pressure condition, demonstrating that the level of target insects in the field environment influences the persistence and spread of insect‐resistant transgenes in wild rice populations. These findings suggest that evolutionary fate of escaped transgenes is different in wild populations with diverse genetic backgrounds under various environmental conditions.  相似文献   

16.
Abdominal obesity is characterized by accumulation of subcutaneous and visceral fat in the abdomen and has been reported to be largely responsible for many metabolic and vascular diseases. Although substantial effort has been dedicated to identification of genetic factors associated with abdominal obesity, as measured by the waist-hip ratio and waist circumference, only a few studies have explored associations with visceral fat accumulation in the abdomen. Furthermore, genetic studies of abdominal visceral adiposity conducted in Asian ethnic groups are rare. To gain insight into the genetic basis for visceral adiposity in Asian subjects, we conducted genome-wide association analysis for a pool of 1594 Korean subjects. Abdominal visceral fat area was estimated by computed tomography. After adjustment for age, linear association analysis identified three loci showing suggestive evidence of association (P?<?5?×?10?6) in ASIC2, SLC35F3, and 5q14.2. Stratification by sex revealed one female-specific locus (rs17104731) located near LINC01519 with a genome-wide significant association for visceral adiposity (P?=?4.66?×?10?8). Since visceral fat has been suggested to influence metabolic traits, we analyzed associations of the loci identified in this study with metabolic indicators, such as glucose, insulin, and lipid levels, and markers of kidney function. A locus (rs6699737) in SLC35F3 showed a nominal association (P?<?5?×?10?2) with alanine transaminase, aspartate transaminase, and fasting plasma insulin. In addition, the linear association test using genetic risk score demonstrated that visceral adiposity loci detected in this study had a cumulative effect on abdominal visceral fat area, waist-hip-ratio, total cholesterol, and low density lipoprotein cholesterol. In summary, this study reports new loci associated with visceral adiposity and provides evidence supporting involvement of these loci in several metabolic traits in Korean populations.  相似文献   

17.
近10年来兴起的全基因组关联分析(Genome-wide association study, GWAS)相关研究结果获得了大量与2型糖尿病相关的候选易感基因,了解这些候选基因在正常人群中的遗传多样性程度以及在不同人群间的遗传差异,不但有助于阐明2型糖尿病的遗传机理,而且对于今后在特定人群中进行2型糖尿病发病机制的深入研究具有指导意义。本研究通过对GWAS数据库和相关文献的搜索和整理确定了170个与2型糖尿病相关的基因或基因区域;随后基于千人基因组计划的全基因组测序数据对这些候选基因在世界范围内14个人群间的遗传多样性进行了比较分析;进一步确定了在人群间存在显著差异的易感基因,并分析了这些基因的多样性特征。在所研究的14个世界人群中,2型糖尿病候选易感基因的遗传多样性与基因组范围的平均水平没有显著差异;但其中8个易感基因IL20RA、RNMTL1-NXN、NOTCH2、ADRA2A-BTBD7P2、TBC1D4、RBM38-HMGB1P1、UBE2E2和PPARD在群体间呈现显著差异,其中最明显的是IL20RA基因 (FST=0.152),该易感基因在非洲人群和非非洲人群间存在显著等位基因频率和单倍型频率差异。14个人群中易感基因遗传结构差异的主要原因是由于非洲人群与非非洲人群之间的群体遗传结构的不同所造成的。进一步比较东西方人群间的2型糖尿病候选基因遗传结构差异,发现在东西方人群中同样存在明显的群体遗传结构差别,其中DGKB-AGMO(FST=0.173)和JAZF1(FST=0.182)是差异最显著的易感基因。本研究通过对群体间2型糖尿病易感基因遗传结构进行比较,鉴别出一些差异特别显著的易感基因,对今后2型糖尿病易感基因与不同人群间发病率和易感性差异的相关研究提供重要参考。  相似文献   

18.
Among leguminous plants, the model legume Lotus japonicus (Regel) Larsen has many biological and genetic advantages. We have developed a genetic linkage map of L. japonicus based on amplified fragment length polymorphism (AFLP), simple sequence repeat polymorphism (SSRP) and derived cleaved amplified polymorphic sequence (dCAPS). The F2 mapping population used was derived from a cross between two L. japonicus accessions Gifu B-129 and Miyakojima MG-20. These parental accessions showed remarkable cytological differences, particularly with respect to size and morphology of chromosomes 1 and 2. Using fluorescence in situ hybridization (FISH) with BAC clones from Gifu B-129 and TAC (Transformation-competent Artificial Chromosome) clones from Miyakojima MG-20, a reciprocal translocation was found to be responsible for the cytological differences between chromosomes 1 and 2. The borders of the translocations were identified by FISH and by alignment toward the L. filicaulis x L. japonicus Gifu B-129 linkage map. The markers from the main translocated region were located on linkage groups 1 and 2 of the two accessions, Gifu B-129 and Miyakojima MG-20, respectively. The framework of the linkage map was constructed based on codominant markers, and then dominant markers were integrated separately in each linkage group of the parents. The resulting linkage groups correspond to the six pairs of chromosomes of L. japonicus and consist of 287 markers with 487.3 cM length in Gifu B-129 and 277 markers with 481.6 cM length in Miyakojima MG-20. The map and marker information is available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

19.
In general, landscape genetic studies have ignored the potential role that the phenotype of individuals plays in determining fine-scale genetic structure in species. This potential over-simplification ignores an important component that dispersal is both condition- and phenotype-dependent. In order to investigate the relationship between potential dispersal, habitat selection and phenotype, we examined the spatial ecology, body mass and fine-scale genetic structure of weasels (Mustela nivalis) in Bia?owie?a Forest in Poland. Our study population is characterized by an almost three-fold phenotypic variation in adult body mass and weasels were segregated in certain habitats according to size. We detected significant genetic structuring associated with habitat within the studied area and analyses of radio-tracking and re-capture data showed that the maximum extent of movement was achieved by weasels of medium body size, whereas the smallest and largest individuals exhibited higher site fidelity. With the unrestricted movement of the medium-sized individuals across optimal habitat, genetic admixture does occur. However, the presence of a barrier leads to unidirectional gene flow, with larger individuals outcompeting smaller individuals and therefore maintaining the genetic break in the study area. This highlights the importance of considering both intrinsic (phenotype) and extrinsic (environmental) factors in understanding dispersal patterns and ultimately, gene flow in complex landscapes.  相似文献   

20.
The gametes produced in meiosis provide information on the frequency of recombination and also on the interdependence of recombination events, i.e. interference. Using F2 individuals, it is not possible in all cases to derive the gametes, which have fused, and which provide the information about interference unequivocally when three or more segregating markers are considered simultaneously. Therefore, a method was developed to estimate the gametic frequencies using a maximum likelihood approach together with the expectation maximisation algorithm. This estimation procedure was applied to F2 mapping data from rice (Oryza sativa L.) to carry out a genome-wide analysis of crossover interference. The distribution of the coefficient of coincidence in dependence on the recombination fraction revealed for all chromosomes increasing positive interference with decreasing interval size. For some chromosomes this mutual inhibition of recombination was not so strong in small intervals. The centromere had a significant effect on interference. The positive interference found in the chromosome arms were reduced significantly when the intervals considered spanned the centromere. Two chromosomes even demonstrated independent recombination and slightly negative interference for small intervals including the centromere. Different marker densities had no effect on the results. In general, interference depended on the frequency of recombination events in relation to the physical length. The strength of the centromere effect on interference seemed to depend on the strength of recombination suppression around the centromere.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号