首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化感——外来入侵植物的“Novel Weapons”   总被引:40,自引:1,他引:39  
吴锦容  彭少麟 《生态学报》2005,25(11):3093-3097
综述了与外来植物入侵相关的理论假说。并主要介绍了从化感角度提出的“N ove lW eapons”假说(NW假说)。某些外来入侵植物能产生一些化学物质。这些物质可以发挥较强的化感作用,或者成为植物和土壤微生物之间相互作用的调节者。由于不同区域的植物群落共同进化的轨迹不同,被入侵群落的植物对这些化学物质缺乏适应性,因此,这些物质成为了外来种入侵的利器。而对外来种发源地的群落来说,由于长期的共存关系,这些物质对其伴生植物的影响相对较小。NW假说为化感作为外来植物入侵的一种机制奠定了理论基础,为外来入侵植物的防治提供了理论依据,但作为一种较新的理论假说,还需要更多的实验研究加以支持。  相似文献   

2.
Aims Why invasive plants are more competitive in their introduced range than native range is still an unanswered question in plant invasion ecology. Here, we used the model invasive plant Solidago canadensis to test a hypothesis that enhanced production of allelopathic compounds results in greater competitive ability of invasive plants in the invaded range rather than in the native range. We also examined the degree to which the allelopathy contributes increased competitive ability of S. canadensis in the invaded range.Methods We compared allelochemical production by S. canadensis growing in its native area (the USA) and invaded area (China) and also by populations that were collected from the two countries and grown together in a 'common garden' greenhouse experiment. We also tested the allelopathic effects of S. canadensis collected from either the USA or China on the germination of Kummerowia striata (a native plant in China). Finally, we conducted a common garden, greenhouse experiment in which K. striata was grown in monoculture or with S. canadensis from the USA or China to test the effects of allelopathy on plant–plant competition with suitable controls such as adding activated carbon to the soil to absorb the allelochemicals and thereby eliminating any corresponding allopathic effects.Important findings Allelochemical contents (total phenolics, total flavones and total saponins) and allelopathic effects were greater in S. canadensis sampled from China than those from the USA as demonstrated in a field survey and a common garden experiment. Inhibition of K. striata germination using S. canadensis extracts or previously grown in soil was greater using samples from China than from the USA. The competitive ability of S. canadensis against K. striata was also greater for plants originating from China than those from the USA. Allelopathy could explain about 46% of the difference. These findings demonstrated that S. canadensis has evolved to be more allelopathic and competitive in the introduced range and that allelopathy significantly contributes to increased competitiveness for this invasive species.  相似文献   

3.
Parthenium hysterophorus (Asteraceae) is a noxious plant that is considered one of the most invasive species in the world. We studied changes in the composition of plant species and soil properties related to the invasion of P. hysterophorus in three grassland communities of central Nepal. We collected vegetation and soil data along transects that were established in densely invaded to non-invaded areas within homogenous grassland stands. We found significant differences between invaded, transitional and non-invaded plots in species composition and soil properties. There were fewer species in non-invaded than transitional and invaded plots. By P. hysterophorus invasion both native and non-native species were supported or replaced, respectively. The concentrations of soil nitrogen and organic matter were significantly higher in transitional and invaded plots than in non-invaded plots. Soil pH, phosphorus and potassium were highest in the invaded plots, lowest in the non-invaded and intermediate in the transitional plots. Due to changes in above-ground vegetation and below-ground soil nutrient contents, P. hysterophorus invasion is likely to have an overall negative effect on the functioning of the entire ecosystem. Therefore, management of noxious P. hysterophorus is necessary to prevent future problems.  相似文献   

4.
Allelopathic effects of invasive plants on native flora may be mitigated by the abiotic and biotic environment into which the allelochemicals are released. Lonicera maackii (Amur honeysuckle), an invasive plant of the eastern deciduous forest, suppresses seed germination in laboratory assays. We investigated how L. maackii leachate interacts with abiotic conditions and with the soil microbial community. First, we tested the effects of leaf extract from L. maackii on germination of the native woodland herb, Blephilia hirsuta, under different light and soil conditions. We found that germination of Blephilia hirsuta was reduced by L. maackii extract, but abiotic conditions did not interact with this effect. We also tested the effects of leaf extract on germination of five native woodland species and L. maackii placed in sterile or live soil. There was an overall suppressive effect of L. maackii extract on itself and the other five native species tested. However, L. maackii extract interacted with live soil in ways that differed with the species being tested and, in some cases, changed over time. Our results indicate that allelopathic potential of L. maackii shows context dependency with respect to soil microorganisms and native species identity but not to light conditions or soil type. Our results imply that restoration of invaded areas may require active reintroduction of species sensitive to allelopathy in live soil. Further, laboratory assays of allelopathy should consider the interaction of allelochemicals with biotic and abiotic conditions to more accurately predict the impacts of allelopathy on plant communities.  相似文献   

5.
Many plants release allelopathic chemicals that can inhibit germination, growth, and/or survival in neighboring plants. These impacts appear magnified with the invasion of some non-native plants which may produce allelochemicals against which native fauna have not co-evolved resistance. Our objective was to examine the potential allelopathic impact of an invasive non-native shrub/tree on multiple plant species using field observation and experimental allelopathy studies. We surveyed and collected an invasive, non-native tree/shrub (Rhamnus cathartica) at Tifft Nature Preserve (a 107-ha urban natural area near Lake Erie in Buffalo, NY). We also surveyed understory plant communities in the urban forest to examine correlations between R. cathartica abundance and local plant community abundance and richness. We then used experimental mesocosms to test if patterns observed in the field could be explained by adding increased dosages of R. cathartica to soils containing five plant species, including native and non-native woody and herbaceous species. In the highly invaded urban forest, we found that herbaceous cover, shrubs and woody seedlings negatively covaried with R. cathartica basal area and seedlings density. In the mesocosm experiments, R. cathartica resulted in significant decreases in plant community species richness, abundance, and shifted biomass allocation from roots. Our results provide evidence that R. cathartica is highly allelopathic in its invaded range, that R. cathartica roots have an allelopathic effect and that some plant species appear immune. We suggest that these effects may explain the plant’s ability to form dense monocultures and resist competitors, as well as shift community composition with species-specific impacts.  相似文献   

6.
Invasions of alien species are a great threat to biodiversity and native species communities. There are many examples in the literature on how the invasive plants affect the natural environment. Beside reports on negative effects of these invasions, there are also several studies indicating a positive impact of the invaders. Canadian goldenrod (Solidago canadensis) is one of the most invasive plant species all over Europe. Earlier studies showed that the goldenrod affects natural plant communities and has a negative impact on many animals, both vertebrates and arthropods. However, all the studies were conducted during goldenrod flowering. In contrast, this study has tested the novel hypothesis that Canadian goldenrod has a positive effect on native spider hunting success and increases spider abundance in farmland outside the growing season. Observations were made during spring on 13 meadows: 7 invaded and 6 non-invaded by goldenrod. All tall plants from experimental plots (1 m2 each) were examined for the presence of spiders, their nets and prey. Prey items were counted only in spider webs. The results support the hypothesis that S. canadensis is a favourable foraging habitat for spiders: 14.6 spiders/m2 on invaded plots versus 2.2 on non-invaded ones. Many spiders of the families Theridiidae and Araneidae were found on goldenrod plants, but on native plants only the Araneidae were found. Moreover, on invaded plots, much more prey items/m2 were present in spiders webs than on non-invaded plots (155.3 vs. 13.8). The study is a rare example of a positive influence of invasive plants on the native arthropod community. This is also a novel approach that shows the importance of dry goldenrod stems in invaded ecosystems.  相似文献   

7.
Successful plant invasions depend, at least partly, on interactions between introduced plants and native plant communities. While allelopathic effects of introduced invaders on native resident species have received much attention, the reverse, i.e. allelopathic effects of native residents on introduced plants, have been largely neglected. Therefore, we tested whether allelopathy of native plant communities decreases their invasibility to introduced plant species. In addition, we tested among the introduced species whether the invasive ones are more tolerant to allelopathy of native plant communities than the non-invasive ones. To test these hypotheses, we grew nine pairs of related (congeneric or confamilial) invasive and non-invasive introduced plant species (i.e. 18 species) in the presence or absence of a native grassland community, which consisted of three common forbs and three common grasses, with or without activated carbon in the soil. Activated carbon reduced the survival percentage and growth of introduced plants in the absence of the native plant community. However, its net effect on the introduced plants was neutral or even slightly positive in the presence of the native community. This might suggest that the native plant community imposed allelopathic effects on the introduced plants, and that these effects were neutralized or reduced by activated carbon. The invasive and non-invasive introduced plants, however, did not differ in their tolerance to such allelopathic effects of the native plant community. Thus, although allelopathy of native plant communities might increase their resistance against introduced plants, there was no evidence that tolerance to allelopathy of native plant communities contributes to the degree of invasiveness of introduced plants.  相似文献   

8.
The method of clearing alien species and the nature of the soil seedbank influence the quality of restoration outcomes, particularly in fire-prone ecosystems heavily invaded with fire-adapted alien species. One of the challenges encountered is reducing the likelihood of reinvasions when the invading species are equally responsive to restoration treatments. By simulating the fire effects that are required to regenerate native vegetation, the study tested whether the recovery of the native species could be initiated without conducting a prescribed ecological burn. In a case study of South African Cape Flats Sand Fynbos with a heavy invasion of Acacia saligna, the felled acacia were stacked into brush piles, with the litter raked off from the sowing areas and the collected seeds were pre-treated for germination. Despite the lack of a fire, the sowing of pre-treated seeds on raked plots led to good recovery of native vegetation over time. This was indicated by the recovery of higher density, cover and richness of native species in sown plots compared with unsown treatments. However, the recovery of native species had not approached the vegetation structure comparable to a reference site after 2 years; that is, only partial fynbos structure was recovered. The recruitment of acacia was less dense without fire, as hypothesised, and independent of treatment. However, over time, control plots had higher acacia cover than other treatments. Despite this sparse recruitment of acacia, the acacia seedbank decreased naturally to about 50% of the initial size over 2 years in control plots. Raking off litter during site preparation removed 50% of the acacia seedbank which decreased slightly thereafter. Consequently, the residual acacia seedbank was relatively similar across treatments after 2 and a half years. In conclusion, circumventing prescribed burns in heavily degraded fynbos ecosystems is a scalable restoration strategy, as recruitment of alien acacia was minimized, its seedbank declined significantly, and good native cover developed after clearing and sowing.  相似文献   

9.
Tall fescue (Festuca arundinacea Schreb.), a highly competitive European grass that invades US grasslands, is reportedly allelopathic to many agronomic plants, but its ability to inhibit the germination or growth of native grassland plants is unknown. In three factorial glasshouse experiments, we tested the potential allelopathic effects of endophyte-infected (E+) and uninfected (E−) tall fescue on native grasses and forbs from Midwestern tallgrass prairies. Relative to a water control, at least one extract made from ground seed, or ground whole plant tissue of E+ or E− tall fescue reduced the germination of 10 of 11 species in petri dishes. In addition, the emergence of two native grasses in potting soil was lower when sown with E+ and E− tall fescue seedlings than when sown with seeds of conspecifics or tall fescue. However, when seeds of 13 prairie species were sown in sterilized, field-collected soil and given water or one of the four tall fescue extracts daily, seedling emergence was lower in one extract relative to water for only one species, and subsequent height growth did not differ among treatments for any species. We conclude that if tall fescue is allelopathic, its inhibitory effects on the germination and seedling growth of native prairie plants are limited, irrespective of endophyte infection. On the other hand, the apparent inability of these plants to detect tall fescue in field soil could hinder prairie restoration efforts if germination near this strong competitor confers fitness consequences. We propose that lack of chemical recognition may be common among resident and recently introduced non-indigenous plants because of temporally limited ecological interactions, and offer a view that challenges the existing allelopathy paradigm. Lastly, we suggest that tall fescue removal will have immediate benefits to the establishment of native grassland plants.  相似文献   

10.
Disturbances and propagule pressure are key mechanisms in plant community resistance to invasion, as well as persistence of invasions. Few studies, however, have experimentally tested the interaction of these two mechanisms. We initiated a study in a southwestern ponderosa pine (Pinus ponderosa Laws.)/bunch grass system to determine the susceptibility of remnant native plant communities to cheatgrass (Bromus tectorum L.) invasion, and persistence of cheatgrass in invaded areas. We used a 2 × 2 factorial design consisting of two levels of aboveground biomass removal and two levels of reciprocal seeding. We seeded cheatgrass seeds in native plots and a native seed mixture in cheatgrass plots. Two biomass removal disturbances and sowing seeds over 3 years did not reverse cheatgrass dominance in invaded plots or native grass dominance in non-invaded native plots. Our results suggest that two factors dictated the persistence of the resident communities. First, bottlebrush squirreltail (Elymus elymoides (Raf.) Swezey) was the dominant native herbaceous species on the study site. This species is typically a poor competitor with cheatgrass as a seedling, but is a strong competitor when mature. Second, differences in pretreatment levels of plant-available soil nitrogen and phosphorus may have favored the dominant species in each community. Annual species typically require higher levels of plant-available soil nutrients than perennial plants. This trend was observed in the annual cheatgrass community and perennial native community. Our study shows that established plants and soil properties can buffer the influences of disturbance and elevated propagule pressure on cheatgrass invasion.  相似文献   

11.
ABSTRACT

Background: Invasive plants can negatively impact native communities, but the majority of the effects of these invasions have been demonstrated only for temperate ecosystems. Tropical ecosystems, including the Cerrado, a biodiversity hotspot, are known to be invaded by numerous non-native species, but studies of their impacts are largely lacking.

Aims: Our research aimed at quantifying how Pinus spp. presence and density affected Cerrado plant communities.

Methods: We sampled areas invaded and non-invaded by Pinus spp. to determine if pine invasion affected native tree richness, diversity, evenness, and density. We also evaluated if community composition differed between invaded and non-invaded sites.

Results: We found invaded plots had lower native tree densities than non-invaded plots and that Pinus spp. invasions changed native tree communities by reducing native species abundances.

Conclusion: Invasive pines had negative impacts on the native Cerrado tree community by reducing native plant density and changing species abundances. Reduced density and abundance at early invasion stages can result in reduction in biodiversity in the long term.  相似文献   

12.
Allelopathy is an important process in plant communities, but the role of seed allelopathy in natural ecosystems remains poorly understood. In the present study, we examined the potential allelopathic effects of Ligularia virgaurea (a dominant species in degraded Tibetan grasslands) seeds on the germination of four native grass species (Festuca sinensis, Agrostis gigantean, Bromus inermis, and Elymus nutans). The results showed that L. virgaurea seeds can have potential allelopathic effects on seed germination, mean time to germination and root growth rates of native grass species. We further demonstrate that these effects are driven by a water-soluble seed leachate. Species with smaller seeds were generally more sensitive than larger seeded species. The results suggest that seed-to-seed allelopathic potential may be an important mechanism driving the dominance of L. virgaurea in degraded alpine grasslands on the Tibetan Plateau. Further studies are required to demonstrate effects of seed-to-seed potential allelopathy in a field setting.  相似文献   

13.
L.R. Scrivanti 《Flora》2010,205(5):302-305
Bothriochloa laguroides var. laguroides (DC.) Herter, a native bluestem of America, has been shown to produce many biologically active compounds. The allelopathic potential of aqueous extracts from roots, stems and leaves was examined. Lettuce seeds (Lactuca sativa) and maize (Zea mays), the common allelopathy bioassay systems, as well as seeds from two native species, wintergreen paspalum (Paspalum guenoarum) and lovegrass (Eragrostis curvula), were germinated in the presence of aqueous extracts. Percent seed germination, root and shoot elongation were measured. After 4 and 7 days root, stem and leaf extracts caused inhibition of root and shoot elongation in all four species tested. Aqueous extracts were generally less inhibitory to seed germination. Aqueous extracts from different parts of B. laguroides var. laguroides show therefore allelopathic effects inhibiting, in particular, growth of competing plants.  相似文献   

14.
A relatively small subset of exotic plant species competitively exclude their neighbors in invaded “recipient” communities but coexist with neighbors in their native habitat. Allelopathy has been argued as one of the mechanisms by which such exotics may become successful invaders. Three approaches have been used to examine allelopathy as a mechanism for invasion. The traditional approach examines exotic invasives in the same way that other native plants also suspected of allelopathic activities are studied. In this approach dose, fate, and replenishment of chemicals can provide powerful evidence for allelopathic processes. The bio-geographical approach often does not provide as much mechanistic evidence for allelopathy, but comparing the allelopathic effects of exotic invasives on species from their native and invaded communities yields stronger evidence than the traditional approach for whether or not allelopathy actually contributes to invasive success. The congeneric, or phylogenetic, approach involves comparative studies of exotic species with natives in the same genus or that are as closely related as possible. Congeneric approaches are limited in inference and have been used to study the role of natural enemies in exotic invasion, but this approach has not been widely used to study allelopathy and invasion. We discuss these three approaches and present a data set for congeneric Lantana and Prosopis to illustrate how the congeneric approach can be used, and use Centaurea maculosa and (±)-catechin to demonstrate experimentally how traditional and bio-geographic approaches can be integrated to shed light on allelopathy in exotic plant invasions.  相似文献   

15.

Background

The species Carpobrotus edulis, native to South Africa, is one of the major plant invaders of Mediterranean coastal ecosystems around the world. Invasion by C. edulis exerts a great impact on coastal habitats. The low number of native species in invaded communities points to the possible existence of mechanisms suppressing their germination. In this study we assessed whether soil factors, endozoochory, competition and allelopathic effects of the invader affect its own early establishment and that of the native species Malcolmia littorea. We used laboratory solutions representing different chemical composition and moisture of the soil, herbivore feeding assays to simulate seed scarification and rainwater solutions to account for the effect of differently aged C. edulis litter.

Principal Findings

We show that unlike that of the native species, germination and early growth of C. edulis was not constrained by low moisture. The establishment of C. edulis, in terms of germination and early growth, was increased by scarification of seeds following passage through the European rabbit intestines; the rabbits therefore may have potential implications for plant establishment. There was no competition between C. edulis and M. littorea. The litter of the invasive C. edulis, which remains on the soil surface for several years, releases allelopathic substances that suppress the native plant germination process and early root growth.

Conclusions

The invasive species exhibits features that likely make it a better colonizer of sand dunes than the co-occurring native species. Allelopathic effects, ability to establish in drier microsites and efficient scarification by rabbits are among the mechanisms allowing C. edulis to invade. The results help to explain the failure of removal projects that have been carried out in order to restore dunes invaded by C. edulis, and the long-lasting effects of C. edulis litter need to be taken into account in future restoration projects.  相似文献   

16.
The invasion by alien macrophytes in aquatic ecosystems may produce a strong alteration of the native aquatic vegetation leading to heavy impacts for both plant and faunal native diversity. Myriophyllum aquaticum is an aquatic plant native of Southern America, invasive in several part of the world. We studied the effects of M. aquaticum invasion on plant and macro-arthropod communities in the canals around a protected wetland in the Mediterranean basin. We sampled plant and macro-arthropod communities in 10 transects in invaded and non-invaded tracts of the canals. We assessed the differences in plant and macro-arthropod species richness, diversity, taxonomic diversity and species composition between invaded and non-invaded habitats by means of univariate and multivariate analyses. Our study shows a significant loss of plant diversity between non-invaded to invaded sites, leading to communities numerically and taxonomically impoverished and highly divergent in the species composition. We also detected significant differences in arthropod species composition between invaded and non-invaded transects. Some taxa such as mosquitoes and malacostraca were more frequent in the M. aquaticum-dominated stands. Furthermore, the study shows a positive relation between invaded habitats and juvenile individuals of the invasive alien crayfish Procambarus clarkii.  相似文献   

17.
Reed canary grass (Phalaris arundinacea, L.) invasion of wetlands is an ecological issue that has received attention, but its impact on soil microbial diversity is not well documented. The present study assessed the size (substrate-induced respiration), catabolic diversity (CLPP, community level physiological profiles) and composition (selective inhibition) of the soil microbial community in invaded (>95% P. arundinacea cover) and in non-invaded areas of a wetland occupied by native species grown either as a mixed assemblage (22 species) or as quasi-monotypic stands of Scirpus cyperinus (74% cover). The study also tested the hypothesis that decomposition of lignin- and phenolics-rich plant tissues would be fastest in soils exhibiting high catabolic diversity. Results showed that soil respiration, microbial biomass and diversity were significantly higher (P?<?0.03; 1.5 to 3 fold) in P. arundinacea-invaded soils than in soils supporting native plant species. Fungal to bacterial ratios were also higher in invaded (0.6) than in non-invaded (0.4) plots. Further, canonical discriminant analysis of CLPP data showed distinct communities of soil decomposers associated with each plant community. However, these differences in microbial attributes had no effect on decomposition of plant biomass which was primarily controlled by its chemical composition. While P. arundinacea invasion has substantially reduced plant diversity, this study found no parallel decline in the size and diversity of the soil microbial community in the invaded areas.  相似文献   

18.
Ants are dominant members of many terrestrial ecosystems and are regarded as indicators of environmental changes. However, little is known about the effects of invasive alien plants on ant populations, particularly as regards the density, spatial distribution and size of ant colonies, as well as their foraging behaviour. We addressed these questions in a study of grassland ant communities on five grasslands invaded by alien goldenrods (Solidago sp.) and on five non-invaded grasslands without this plant. In each grassland, seven 100 m2 plots were selected and the ant colonies counted. Ant species richness and colony density was lower in the plots on the invaded grasslands. Moreover, both of these traits were higher in the plots near the grassland edge and with a higher number of plant species in the grasslands invaded by goldenrods but not in the non-invaded ones. On average, ant colony size was lower on the invaded grasslands than the non-invaded ones. Also, ant workers travelled for longer distances to collect food items in the invaded areas than they did in the non-invaded ones, even after the experimental removal of some ant colonies in order to exclude the effect of higher colony density in the latter. Our results indicate that invasive alien goldenrods have a profound negative effect on grassland ant communities which may lead to a cascade effect on the whole grassland ecosystem through modification of the interactions among species. The invasion diminishes a major index of the fitness of ants, which is a colony’s size, and probably leads to increased foraging effort of workers. This, in turn, may have important consequences for the division of labour and reproductive strategies within ant colonies.  相似文献   

19.
Habitat loss is causing amphibian population declines worldwide, so there is increased attention to forces that degrade remaining habitats. Terrestrial habitats surrounding wetlands are critical foraging areas for temperate anurans. We investigated plant community changes in two old fields invaded by Japanese knotweed (Fallopia japonica) and the foraging success of Green frogs (Rana clamitans) in invaded and non-invaded portions of those fields. Within each field, vegetation data were recorded in quadrats located along two transects bisecting the invasion fronts. We placed frogs in ‘foraging buckets’ along transects and measured their change in mass over a 38 h period. There were significant changes in vegetation structure and composition associated with Japanese knotweed invasion. Diverse assemblages of native plants that covered non-invaded plots were absent from areas invaded by Japanese knotweed. There was also a significant change in vegetation architecture between invaded and non-invaded habitats. Change in frog mass declined significantly along transects, with most frogs in non-invaded plots gaining mass and no frogs in invaded plots gaining mass. Most frogs from non-invaded plots but only two from invaded plots defecated shortly after removal from foraging buckets (verification of recent feeding). We hypothesize that Japanese knotweed invasions degrade terrestrial habitat quality for frogs by indirectly reducing arthropod abundance. Nonnative plant invasions may be another factor contributing to amphibian population declines.  相似文献   

20.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号