首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Cytoplasmic male sterility (CMS) is not only important for exploiting heterosis in crop plants, but also as a model for investigating nuclear-cytoplasmic interaction. CMS may be caused by mutations, rearrangement or recombination in the mitochondrial genome. Understanding the mitochondrial genome is often the first and key step in unraveling the molecular and genetic basis of CMS in plants. Comparative analysis of the mitochondrial genome of the hau CMS line and its maintainer line in B. juneca (Brassica juncea) may help show the origin of the CMS-associated gene orf288.

Results

Through next-generation sequencing, the B. juncea hau CMS mitochondrial genome was assembled into a single, circular-mapping molecule that is 247,903 bp in size and 45.08% in GC content. In addition to the CMS associated gene orf288, the genome contains 35 protein-encoding genes, 3 rRNAs, 25 tRNA genes and 29 ORFs of unknown function. The mitochondrial genome sizes of the maintainer line and another normal type line “J163-4” are both 219,863 bp and with GC content at 45.23%. The maintainer line has 36 genes with protein products, 3 rRNAs, 22 tRNA genes and 31 unidentified ORFs. Comparative analysis the mitochondrial genomes of the hau CMS line and its maintainer line allowed us to develop specific markers to separate the two lines at the seedling stage. We also confirmed that different mitotypes coexist substoichiometrically in hau CMS lines and its maintainer lines in B. juncea. The number of repeats larger than 100 bp in the hau CMS line (16 repeats) are nearly twice of those found in the maintainer line (9 repeats). Phylogenetic analysis of the CMS-associated gene orf288 and four other homologous sequences in Brassicaceae show that orf288 was clearly different from orf263 in Brassica tournefortii despite of strong similarity.

Conclusion

The hau CMS mitochondrial genome was highly rearranged when compared with its iso-nuclear maintainer line mitochondrial genome. This study may be useful for studying the mechanism of natural CMS in B. juncea, performing comparative analysis on sequenced mitochondrial genomes in Brassicas, and uncovering the origin of the hau CMS mitotype and structural and evolutionary differences between different mitotypes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-322) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
The so-called "wild abortive" (WA) type of cytoplasmic male sterility (CMS) derived from a wild rice species Oryza rufipogon has been extensively used for hybrid rice breeding. However, extensive analysis of the structure of the related mitochondrial genome has not been reported, and the CMS-associated gene(s) remain unknown. In this study, we exploited a mitochondrial genome-wide strategy to examine the structural and expressional variations in the mitochondrial genome conferring the CMS. The entire mitochondriai genomes of a CMS-WA line and two normal fertile rice lines were amplified by Long-polymerase chain reaction into tilling fragments of up to 15.2 kb. Restriction and DNA blotting analyses of these fragments revealed that structural variations occurred in several regions in the WA mitochondrial genome, as compared to those of the fertile lines. All of the amplified fragments covering the entire mitochondrial genome were used as RNA blot probes to examine the mitochondriai expression profile among the CMS-WA and fertile lines. As a result, only two mRNAs were found to be differentially expressed between the CMS-WA and the fertile lines, which were detected by a probe containing the nad5 and orf153 genes and the other having the ribosomal protein gene rpl5, respectively. These mRNAs are proposed to be the candidates for further identification and functional studies of the CMS gene.  相似文献   

4.

Key message

Thirteen rice CMS lines derived from different cytoplasms were classified into eight groups by PCR amplification on mtDNA. The orf79 gene, which causes Boro II CMS, possibly results in Dian1-CMS.

Abstract

Thirteen rice cytoplasmic male sterile (CMS) lines derived from different cytoplasms are widely used for hybrid rice breeding. Based on 27 loci on mitochondrial DNA, including single nucleotide polymorphisms and segmental sequence variations between typical indica and japonica as well as high-polymorphism segmental sequence variations and single nucleotide polymorphisms among rice CMS lines, the 13 rice CMS lines were classified into eight groups: (I) wild-abortive CMS, Indonesian Shuitiangu CMS, K-CMS, Gang CMS, D-CMS and dwarf abortive CMS; (II) Maxie-CMS; (III) Honglian CMS; (IV) Boro II CMS; (V) Dian1-CMS; (VI) Liao-CMS; (VII) Lead CMS; and (VIII) Chinese wild rice CMS. According to their pollen abortion phenotypes, groups I and II (including 7 CMS lines) were classified as sporophytic CMS lines, the cytoplasmic genetic relationships among which were very close. They could have originated from similar, or even the same, cytoplasm donors. Groups III–VIII (including 6 CMS lines) were categorized as gametophytic CMS lines, the cytoplasms of which differed from one another, with some having relatively far genetic relationships. Dian1-CMS was found to harbor the orf79 gene, which causes Boro II CMS, whereas Liao-CMS had an orf79 structure that does not result in Lead CMS. Therefore, we speculated that orf79 is associated with Dian1-CMS but not with Liao-CMS. The atp6orf79 structure related to sterility was also found to experience multiple evolutionary turnovers. All sporophytic CMS lines were indica-like. Except the Honglian CMS line, which was indica-like, all gametophytic CMS lines were japonica-like.  相似文献   

5.

Background

Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp.

Results

We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes.

Conclusions

Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-561) contains supplementary material, which is available to authorized users.  相似文献   

6.
Molecular markers, coxII SCAR, atp6-2 SCAR and accD-U, have been used for marker-assisted selection of cytoplasmic male sterility (CMS) in pepper. However, the presence of these markers at the sub-stoichiometric level in maintainer lines affects the reliable selection of male sterile (S-) cytoplasm. This study aimed to develop a new CMS-specific molecular marker, SCAR130, for reliable identification of S-cytoplasm in pepper, while the new and three previous molecular markers were used to determine the cytoplasm types of pepper lines. Based on mitochondrial genome sequence related amplified polymorphism (SRAP) analysis of the CMS lines and the maintainer lines, SCAR130 was developed from a 10-bp deletion at the SRAP primer binding site in the CMS line (130 bp) compared with that in the maintainer line (140 bp). S-cytoplasm could be unambiguously selected from the pepper lines by the different length of the marker bands. Application of the four molecular markers to various pepper lines revealed that SCAR130 is more reliable than the other three previous markers, orf507, ψatp6-2 and accD-U. Homology alignment with BLAST showed that the marker was located between trnE and trnS in the Nicotiana tabacum mitochondrial genome. Furthermore, expression of the marker-linked gene was significantly higher at the pollen abortive stage in the CMS line (HW203A) than in the maintainer line, which indicated that the marker was closely related to male sterility. Hence, factors other than orf507 and ψatp6-2 may exist for the regulation of male sterility in pepper.  相似文献   

7.
ABSTRACT: BACKGROUND: Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. RESULTS: Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the largest unique region. Blast analysis performed to assign the unique regions showed that about 80% of the region was covered by short homologous sequences to the mitochondrial sequences of normal-type radish or other reported Brassicaceae species, although no homology was found for the remaining 20% of sequences. CONCLUSIONS: Ogura-type mitochondrial genome was highly rearranged compared with the normal-type genome by recombination through one large repeat and multiple short repeats. The rearrangement has produced four unique regions in Ogura-type mitochondrial genome, and most of the unique regions are composed of known Brassicaceae mitochondrial sequences. This suggests that the regions unique to the Ogura-type genome were generated by integration and shuffling of pre-existing mitochondrial sequences during the evolution of Brassicaceae, and novel genes such as orf138 could have been created by the shuffling process of mitochondrial genome.  相似文献   

8.
Molecular markers developed from the flanking sequences of two cytoplasmic male sterility (CMS)-associated genes, orf456 and ψatp6-2, have been used for marker-assisted selection of CMS in pepper. However, in practice, the presence of orf456 and ψatp6-2 at substoichiometric levels even in maintainer lines hampers reliable selection of plants containing the CMS gene. In this study, we developed a novel CMS-specific molecular marker, accD-U, for reliable determination of CMS lines in pepper, and used the newly and previously developed markers to determine the cytoplasm types of pepper breeding lines and germplasms. This marker was developed from a deletion in a chloroplast-derived sequence in the mitochondrial genome of a CMS pepper line. CMS pepper lines could be unambiguously determined by presence or absence of the accD-U marker band. Application of orf456, ψatp6-2 and accD-U to various pepper breeding lines and germplasms revealed that accD-U is the most reliable CMS selection marker. A wide distribution of orf456, but not ψatp6-2, in germplasms suggests that the pepper cytoplasm containing both orf456 and ψatp6-2 has been selected as CMS cytoplasm from cytoplasm containing only orf456. Furthermore, factors other than orf456 may be required for the regulation of male sterility in pepper.  相似文献   

9.
A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186 bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.  相似文献   

10.
11.
12.
CMS (cytoplasmic male sterile) rapeseed is produced by asymmetrical somatic cell fusion between the Brassica napus cv. Westar and the Raphanus sativus Kosena CMS line (Kosena radish). The CMS rapeseed contains a CMS gene, orf125, which is derived from Kosena radish. Our sequence analyses revealed that the orf125 region in CMS rapeseed originated from recombination between the orf125/orfB region and the nad1C/ccmFN1 region by way of a 63 bp repeat. A precise sequence comparison among the related sequences in CMS rapeseed, Kosena radish and normal rapeseed showed that the orf125 region in CMS rapeseed consisted of the Kosena orf125/orfB region and the rapeseed nad1C/ccmFN1 region, even though Kosena radish had both the orf125/orfB region and the nad1C/ccmFN1 region in its mitochondrial genome. We also identified three tandem repeat sequences in the regions surrounding orf125, including a 63 bp repeat, which were involved in several recombination events. Interestingly, differences in the recombination activity for each repeat sequence were observed, even though these sequences were located adjacent to each other in the mitochondrial genome. We report results indicating that recombination events within the mitochondrial genomes are regulated at the level of specific repeat sequences depending on the cellular environment.  相似文献   

13.
RFLP Analysis for Mitochondrial Genome of CMS-Rice   总被引:2,自引:0,他引:2  
Restriction fragment length polymorphism (RFLP) was used to analyze mitochondrial (mt) genome of cytoplasmic male sterility (CMS) rice. Differences were observed among mitochondrial genomes of the sterile line (A) and maintain line (B) of nine types of CMS rice; Mitochondrial genomic differences were also detected between A and B in many functional gene regions. Even the materials with the same nucleic background have differences in their mtDNA. This provides molecular evidence for the cytoplasmic heterogeneity and the CMS mechanism research.  相似文献   

14.
细胞质雄性不育水稻线粒体基因组的RFLP分析   总被引:4,自引:0,他引:4  
利用RFLP技术,比较研究了在农业生产上广泛应用的9种细胞质雄性不育体系的线粒体基因组,结果表明:1)9种水稻雄性不育细胞质的遗传相似性变化范围为0.615~1.000。所有配子体雄性不育细胞质的遗传相似性变化范围为0.6431.000,其中QXA,DY1A和YM15A这3种细胞质的遗传相似性为1.000。所有孢子体雄性不育细胞质的遗传相似性为1.000,2)在配子体细胞质雄性不育水稻中,用3个探针(atpa,atp9+nad6,cox2)与2种内切酶(HindⅢ,BamHⅠ)的组合未发现不育系与保持系之间的多态性,但在探针atp6,cob,和had2的杂交带型中找到了不育系和保持系之间的一些差异。YTA和YTB在5个探针.内切酶组合(atp61HindⅢ,coblHindⅢ,atp61BamHⅠ,coblBamHⅠ,nad21BamHⅠ)中存在差异。3种细胞质(QX,SJ,DY1)的不育系和保持系之间的差异是相同的,都出现在atp6/HindⅢ,atp6/BamHⅠ,cob/BamHⅠ等3个组合中。YM15A和YM15B在4个组合(atp6/HindⅢ,atp6/BamHⅠ,cob/BamHⅠ,nad2/BamHⅠ)中存在差异。LYA和LYB的差异出现在cob/HindⅢ,cob/BamHⅠ,nad2/BamHⅠ这3个组合中;3)在孢子体细胞质雄性不育水稻中,所有不育系的带型是一样的,所有保持系的带型也一样。不育系和保持系的差异出现在atp6/HindⅢ,cob/HindⅢ,atp6/EcoR,Ⅰcob/EcoRⅠ,cox1/EcoRⅠ,atp6/BamHⅠ,cob/BamHⅠ,cox1/BamHⅠ,cox2/BamHⅠ等9个组合中。这些结果在分子水平上揭示了9种雄性不育细胞质的线粒体基因组存在结构多样性,并为其细胞质雄性不育分子机理的研究打下了基础。  相似文献   

15.
Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described.  相似文献   

16.
17.
In our previous study, we bred a stable cytoplasmic male sterility (CMS) line of tuber mustard by using distant hybridization and subsequent backcrosses. In this CMS plants, all floral organs are normal except the anthers, which are transformed into petals or tubular structures. Recently, 2 mitochondrial genes—atpA and orf220—that are distinctively present in the CMS line of tuber mustard were cloned and partially characterized. In our study of genetic diversity analysis of CMS, 7 species of Brassica and Raphanus crops, which included 5 CMS lines and their respective maintainer lines, were used to compare the constitution of protein-coding genes in the mitochondrial genomes. In 4 of the 43 mitochondrial genes, namely, atpA, orf220, orf256, and orf305/orf324, polymorphisms were detected among the tuber mustard CMS line and its maintainer line. The results of a cluster analysis indicate that petaloid CMS phenotype of tuber mustard is a novel CMS type and is nearer to the nap CMS in Brassica napus at the phylogenetic level. The results of individual amplifications of these genes indicate the presence of 4 sequence-characterized amplified region (SCAR) markers, which enable rapid and reliable identification of this CMS. Expressions of the orf220 and orf256 genes were detected only in the CMS line, while expression of the orf305 gene was detected in the maintainer line. The different expression patterns of different mitochondrial-specific marker genes indicate that the quantity of mitochondrial proteins is differentially regulated during organ/tissue development in tuber mustard. The results of this study suggest that the above mentioned 4 mitochondrial genes are associated with the petaloid CMS phenotype in tuber mustard.  相似文献   

18.
Cytoplasmic male sterility (CMS) is an important trait in rice (Oryza sativa L.) breeding because it provides a source for producing hybrid seeds. In rice CMS lines, ATPases involved in the oxidative phosphorylation complexes are believed to be dysfunctional due to the expression of rice CMS-related gene orf79. In the present study, a new type of CMS line named CMS-ZA (ZidaoA) was used. We found an orf79 homologous gene (named orfZ79) in three different rice lines (a CMS line, a maintainer line, and a hybrid). However, no detectable expression products of orfZ79 were found in the three lines. We evaluated the ATPase and NADH dehydrogenase activities of the three lines using in-gel catalytic assays. Our results show that the sterile line has intact ATPase activity, while NADH DHase activity is clearly decreased. To investigate NADH dehydrogenase deficiency, we measured NADH DHase activity in etiolated seedlings and green seedlings from the ZidaoA CMS sterile line and its corresponding maintainer line. We note that the NADH DHase activity of the sterile line was more deficient in green seedlings than that in etiolated seedlings. Our results show a possible role of NADH DHase deficiency to cause rice CMS.  相似文献   

19.
In this study, we have investigated the cytoplasmic male sterility (CMS) of a novel male sterile radish line, designated NWB CMS. The NWB CMS was crossed with 16 fertile breeding lines, and all the progenies were completely male sterile. The degree of male sterility exhibited by NWB CMS is more than Ogura CMS from the Cruciferae family. The NWB CMS was found to induce 100% male sterility when crossed with all the tested breeding lines, whereas the Ogura CMS did not induce male sterility with any of the breeding lines. PCR analysis revealed that the molecular factor that influenced Ogura CMS, the orf138 gene, was absent in the NWB CMS line, and that the orf138 gene was not also expressed in this CMS line. In order to identify the cytoplasmic factors that confer male sterility in the NWB CMS line, we carried out RFLP analyses with 32 mitochondrial genes, all of which were used as probes. Fourteen genes exhibited polymorphisms between the NWB CMS line and other radish cultivars. Based on these RFLP data, intergenic primers were developed in order to amplify the intergenic regions between the polymorphic genes. Among these, a primer pair at the 3′ region of the atp6 gene (5′-cgcttggactatgctatgtatga-3′) and the 5′ region of the nad3 gene (5′-tcatagagaaatccaatcgtcaa-3′) produced a 2 kbp DNA fragment as a result of PCR. This DNA fragment was found to be specific to NWB CMS and was not present in other CMS types. It appears that this fragment could be used as a DNA marker to select NWB CMS line in a radish-breeding program.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号