首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The function of the corpus luteum (CL) is a key element in many reproductive processes including ovulation, length of the estrous cycle, recognition of pregnancy and embryo survival in all mammalian species. The main function of the CL is to produce progesterone which acts on its tissues to prepare them for successful pregnancy. The CL is controlled by numerous biological compounds which provide luteotropic support during the estrous cycle and pregnancy and for inducing luteolysis at the end of the cycle The purpose of this paper is to review the mechansims responsible for controlling the endocrine function of this tissue in the bovine ovary.  相似文献   

2.
Recent studies indicate that the corpus luteum (CL) may be a source of prostaglandin F2alpha (PGF2alpha) for regression. We investigated expression of mRNA and protein for prostaglandin G/H synthase (PGHS) in the CL of immature superovulated rats following administration of PGF2alpha. We observed an increase in mRNA for PGHS-2, the induced isoform, at 1 h and protein at 8 and 24 h after treatment. One hour after PGF2alpha, there was also a progressive decrease in plasma progesterone concentration. There were no changes, however, in expression of PGHS-1, the constitutive isoform, over the 24 h sampling period. These results indicate that PGHS-2 increases following PGF2alpha treatment and that expression of this enzyme in the rat CL may contribute to the luteolytic mechanism.  相似文献   

3.
To test whether nitric oxide (NO) is involved in prostaglandin (PG) F2alpha-induced regression of the bovine corpus luteum (CL) in vivo, heifers were treated as follows: Group 1, saline (3 ml/h); Group 2, dinoprost, an analogue of prostaglandin F2alpha (aPGF2alpha; 5 mg/0.5 h); Group III, Nomega-nitro-L-arginine methyl ester (L-NAME; 200 mg/4 h), an inhibitor of nitric oxide synthase; and Group IV, L-NAME (400 mg/4 h) and aPGF2alpha (5 mg/0.5 h). All treatments were administered by an intraluteal microdialysis system (MDS) on day 15 of the cycle. Perfusate and jugular plasma samples were collected at half-hour intervals; additionally, jugular plasma samples were collected once daily from day 16 to day 21 of the cycle. In the perfusate samples, aPGF2alpha increased P4 (P < 0.05), PGE2 (P < 0.001), and LTC4 (P < 0.05) concentrations; L-NAME increased P4 (P < 0.05) but did not change PGE2 and LTC4 (P > 0.05) concentrations as compared with the period before treatment. Simultaneous perfusion of CL with L-NAME and aPGF2alpha caused a further increase of P4 concentration (P < 0.05) induced by L-NAME or aPGF2alpha treatment and increased PGE2 and LTC4 (P < 0.001) concentrations to the level observed after aPGF2alpha treatment. Perfusion of CL with aPGF2alpha caused luteal regression within 24 h, while perfusion with L-NAME prolonged the life span of CL to day 21 (P < 0.05). Concomitant L-NAME and aPGF2alpha treatment partially counteracted (P < 0.05) the luteal regression caused by aPGF2alpha administration. These results show that NO is involved in the process of luteolysis in the bovine CL and suggest that the luteolytic effect of aPGF2alpha may be mediated by NO as an important component of an autocrine/paracrine luteolytic cascade.  相似文献   

4.
The hypothesis that, in the ewe, prostaglandin (PG) F2alpha administration on day 3 after ovulation is followed by luteolysis and ovulation was tested using 24 animals. The ewes were treated with a dose of a PGF2alpha analogue (delprostenate, 160 microg) on days 1 (n=8), 3 (n=8) or 5 (n=8) after ovulation, was established by transrectal ultrasonography. Daily scanning and blood sampling were performed to determine ovarian changes and progesterone serum concentrations by radioinmunoassay. The treatment induced a sharp decrease of progesterone concentrations followed by oestrus and ovulation in all ewes treated on days 3 and 5 and in one ewe treated on day 1 (8/8, 8/8, 1/8; P<0.05). Seven ewes treated on day 1 did not respond to PGF2alpha treatment and had an inter-ovulatory cycle of normal length (17.4 +/- 0.5 days). However, the profile of progesterone concentrations during the cycle of these ewes was delayed 1 day (P<0.05) compared with a control cycle. The overall interval between PGF2alpha and oestrus for the 17 responding ewes was 42.4 +/- 2.3 h. In 15 of these ewes the ovulatory follicle was originated from the first follicular wave and the ovulation occurred at 60.8 +/- 1.8 h after PGF2alpha treatment. The other two responding ewes ovulated an ovulatory follicle originated from the second follicular wave between 72 and 96 h after treatment. These results support the hypothesis and suggest that refractoriness to PGF2alpha of the recently formed corpus luteum (CL) may be restricted to the first 1-2 days post-ovulation.  相似文献   

5.
6.
It has not been possible to demonstrate prostaglandin F2 alpha (PGF2 alpha) participation in primate luteolysis under conditions of systemic administration or of acute intraluteal injection. These study designs were hampered by the short biological half-life in the first instance and brevity of administration in the latter. In this study, luteolysis has resulted from chronic, intraluteal delivery of PGF2 alpha. Using the Alzet osmotic pump-cannula system, normally cycling rhesus monkeys were continuously infused, until menses occurred, with PGF2 alpha (10 ng/1/hr) directly into the corpus luteum (CL, n = 6), into the stroma of the ovary not bearing the corpus luteum (NCL, n = 3), or subcutaneously (SC, n = 5). An additional 5 monkeys received vehicle (V) into the corpus luteum. All experiments commenced 5-7 days after the preovulatory estradiol surge. Luteal function was assessed by the daily measurements of plasma progesterone, estradiol, and LH. Intraluteal PGF2 alpha caused premature functional luteolysis in all monkeys, as reflected by a highly significant decline in circulating progesterone and estradiol and the early onset of menstruation, when compared to the other groups. V, NCL, and SC infusions had no effect on either circulating steroid levels or luteal phase lengths. None of the experimental groups showed any change in plasma LH concentrations. These are the first data to indicate that PGF2 alpha can induce functional luteolysis in the primate, and the site of action appears to be the corpus luteum.  相似文献   

7.
Luteolysis is caused by a pulsatile release of prostaglandin F(2alpha) (PGF(2alpha)) from the uterus in ruminants, and a positive feedback between endometrial PGF(2alpha) and luteal oxytocin (OXT) has a physiologic role in the promotion of luteolysis. The bovine corpus luteum (CL) produces vasoactive substances, such as endothelin 1 (EDN1) and angiotensin II (Ang II), that mediate and progress luteolysis. We hypothesized that luteal OXT has an additive function to ensure the CL regression with EDN1 and Ang II, and that it has an active role in the luteolytic cascade in the cow. Thus, the aim of the present study was to observe real-time changes in the local secretion of luteal OXT and to determine its relationship with other local mediators of luteolysis. Microdialysis system (MDS) capillary membranes were implanted surgically into each CL of six cyclic Holstein cows (18 lines total among the six cows) on Day 15 (estrus == Day 0) of the estrous cycle. Simultaneously, catheters were implanted to collect ovarian venous plasma ipsilateral to the CL. Although the basal secretion of OXT by luteal tissue was maintained during the experimental period, the intraluteal PGF(2alpha) secretion gradually increased up to 300% from 24 h after the onset of luteolysis (0 h; time in which progesterone started to decrease). In each MDS line (microenvironment) within the CL, the local releasing profiles of OXT were positively associated with PGF(2alpha) and EDN1 within the CL in all 18 MDS lines implanted in the six CLs (OXT vs. PGF(2alpha), 50.0%; OXT vs. EDN1, 72.2%; P < 0.05). On the other hand, the intraluteal OXT was weakly related to Ang II (OXT vs. Ang II, 27.7%). In the ovarian vein, the peak concentration of PGF(2alpha) increased significantly when the peak of PGF(2alpha) coincided with the peak of OXT after the onset of spontaneous luteolysis (P < 0.05). In conclusion, intraluteal OXT may locally modulate secretion of vasoactive substances, particularly EDN1 and PGF(2alpha) within the CL, and thus might be one of the luteal mediators of spontaneous luteolysis in the cow.  相似文献   

8.
C V Rao 《Life sciences》1976,18(5):499-506
The Scatchard analysis of equilibrium prostaglandin (PG) F2α binding revealed that the binding was heterogeneous. The Hill plot of the same data had a slope of 0.68. This suggested that the heterogeneous nature of [3H] PGF2α binding was either due to the presence of negative cooperativity or to the presence of two groups of independent binding sites. The kinetic experiments revealed that the presence of excess unlabeled PGF2α in a diluting medium had no effect on dissociation rates at 25 fold dilution and it even retarded dissociation at higher dilutions. Furthermore, the observations that the low affinity PGF2α binding sites can exist in the absence of high affinity binding sites and high affinity binding sites can be selectively abolished by treatment with N-ethylmaleimide suggest that negative cooperativity was not responsible for heterogeneous [3H] PGF2α binding.  相似文献   

9.
10.
The distribution of a prostaglandin F2alpha receptor in various subcellular fractions from bovine corpora lutea obtained by differential and gradient centrifugation paralleled very closely the distribution in these fractions of 5'-nucleotidase, a marker enzyme for plasma membranes. The fractions most enriched in the receptor and 5'-nucleotidase were relatively free of mitochondria and lysosomes but were contaminated to some extent by elements of the endoplasmic reticulum. From these results it can be concluded that the prostaglandin F2alpha receptor is localized on the plasma membranes of the corpus luteum cells. A simple method is described for the purification of plasma membranes from bovine corpora lutea by differential centrifugation.  相似文献   

11.
Natural luteolysis involves multiple pulses of prostaglandin F2alpha (PGF) released by the nonpregnant uterus. This study investigated expression of 18 genes from five distinct pathways, following multiple low-dose pulses of PGF. Cows on Day 9 of the estrous cycle received four intrauterine infusions of 0.25 ml of phosphate-buffered saline (PBS) or PGF (0.5 mg of PGF in 0.25 ml of PBS) at 6-h intervals. A luteal biopsy sample was collected 30 min after each PBS or PGF infusion. There were four treatment groups: Control (n = 5; 4 PBS infusions), 4XPGF (4 PGF infusions; n = 5), 2XPGF-non-regressed (2 PGF infusions; n = 5; PGF-PBS-PGF-PBS; no regression after treatments), and 2XPGF-regressed (PGF-PBS-PGF-PBS; regression after treatments; n = 5). As expected, the first PGF pulse increased mRNA for the immediate early genes JUN, FOS, NR4A1, and EGR1 but unexpectedly also increased mRNA for steroidogenic (STAR) and angiogenic (VEGFA) pathways. The second PGF pulse induced immediate early genes and genes related to immune system activation (IL1B, FAS, FASLG, IL8). However, mRNA for VEGFA and STAR were decreased by the second PGF infusion. After the third and fourth PGF pulses, a distinctly luteolytic pattern of gene expression was evident, with inhibition of steroidogenic and angiogenic pathways, whereas, there was induction of pathways for immune system activation and production of PGF. The pattern of PGF-induced gene expression was similar in corpus luteum not destined for luteolysis (2X-non-regressed) after the first PGF pulse but was very distinct after the second PGF pulse. Thus, although the initial PGF pulse induced mRNA for many pathways, the second and later pulses of PGF appear to have set the distinct pattern of gene expression that result in luteolysis.  相似文献   

12.
Conflicting reports exist regarding the source of luteolytic PGF2 alpha in the rat ovary. To assess the quantities of different PGs, measurements of PGF2 alpha, PGE and PGB were performed by radioimmunoassay in the adult pseudopregnant rat ovary throughout the luteal lifespan. Ovaries of 84 rats were separated by dissection into two compartments, corpora lutea of pseudopregnancy and remainder of ovary. Tissue samples were homogenized and prostaglandins extracted and determined by radioimmunoassay. During the mid-luteal and late-luteal phases, levels of PGs were significantly higher in the corpora lutea of pseudopregnancy than in the remainder of ovary. An increase of PGF2 alpha-content in the corpus luteum was registered with peak-levels of 53.9 +/- 8.5 (mean +/- SEM, N = 18) ng/g tissue wet weight at day 13 of pseudopregnancy. PGE-levels reached peak-values at day 11 of pseudopregnancy (271.6 +/- 28.4 ng/g w w, mean +/- SEM, N = 12). PGB-levels were below detection limits in all compartments for all ages studied. The present study demonstrates increased availability of PGF2 alpha in the corpus luteum during the luteolytic period, and points toward either increased luteal synthesis or luteal binding of PGF2 alpha during the luteolytic period.  相似文献   

13.
In the dog luteolysis is not affected by hysterectomy. This observation led to the hypothesis that paracrine/autocrine rather than endocrine mechanisms of PGF2alpha are responsible for luteal regression in the dioestric bitch. The present experiments tested for the capacity of canine CL to produce and respond to PGF2alpha by qualitatively and quantitatively determining the expressions of PGFS, the enzyme converting PGH2 into PGF2alpha, and the PGF2alpha-receptor (FP) in CL of non-pregnant dogs during dioestrus. Canine PGFS and FP were isolated and cloned; both genes show a high homology (82-94%) when compared to those of other species. Relatively weak FP mRNA expression was detected on day 5 of dioestrus. It had increased by day 25 and remained constant thereafter. In situ hybridization (ISH) localized FP solely to the cytoplasm of the luteal cells, suggesting that these cells are the only luteal targets of PGF2alpha in this species. Only negative results were obtained for the expression of PGFS in canine CL by routine qualitative RT-PCR. When Real Time (TaqMan) PCR was applied, repetitively more negative than positive results were obtained at all timepoints. Any positive measurements observed at any point were neither repeatable nor related to the stage of dioestrus. This led us to conclude that expression of PGFS is either absent or present at very low level only. These data suggest that luteal regression in non-pregnant bitches is not modulated by PGF2alpha. However, the FP seems to be constitutionally expressed, explaining the receptivity of canine CL to exogenous PGF2alpha.  相似文献   

14.
15.
Plasma progesterone and 13,14-dihydro-15-keto Prostaglandin F(2alpha) (PGFM) were measured in normal (uninfected) and Trypanosoma congolense -infected adult goats for a period of 121 d, from May to August, during the breeding season in Kenya. Chronic trypanosomiasis rapidly increased the baseline plasma PGFM levels and the occurrence of irregular PGFM peaks in several infected goats. Progesterone luteal levels declined rapidly from the second and subsequent cycles post patency. Estrous cycles also became irregular but predominately shorter (8 to 19 d) before cessation from the second to fourth cycle following infection. The PGFM levels were still high during the acyclic period in all goats when progesterone levels were very low (1.4 to 2.4 nmol/l). The reciprocal increase in peripheral PGFM and decline in progesterone in these goats would suggest, in part, a trypanosome-induced PGF(2alpha) mediated luteolysis, and the possible involvement of prostaglandins in trypanosome-induced infertility in female goats.  相似文献   

16.
To examine possible mechanisms involved in resistance of the ovine corpus luteum to the luteolytic activity of prostaglandin (PG)F(2alpha), the enzymatic activity of 15-hydroxyprostaglandin dehydrogenase (PGDH) and the quantity of mRNA encoding PGDH and cyclooxygenase (COX-2) were determined in ovine corpora lutea on Days 4 and 13 of the estrous cycle and Day 13 of pregnancy. The corpus luteum is resistant to the action of PGF(2alpha) on Days 4 of the estrous cycle and 13 of pregnancy while on Day 13 of the estrous cycle the corpus luteum is sensitive to the actions PGF(2alpha). Enzymatic activity of PGDH, measured by rate of conversion of PGF(2alpha) to PGFM, was greater in corpora lutea on Day 4 of the estrous cycle (P < 0.05) and Day 13 of pregnancy (P < 0.05) than on Day 13 of the estrous cycle. Levels of mRNA encoding PGDH were also greater in corpora lutea on Day 4 of the estrous cycle (P < 0. 01) and Day 13 of pregnancy (P < 0.01) than on Day 13 of the estrous cycle. Thus, during the early estrous cycle and early pregnancy, the corpus luteum has a greater capacity to catabolize PGF, which may play a role in the resistance of the corpus luteum to the actions of this hormone. Levels of mRNA encoding COX-2 were undetectable in corpora lutea collected on Day 13 of the estrous cycle but were 11 +/- 4 and 44 +/- 28 amol/microgram poly(A)(+) RNA in corpora lutea collected on Day 4 of the estrous cycle and Day 13 of pregnancy, respectively. These data suggest that there is a greater capacity to synthesize PGF(2alpha), early in the estrous cycle and early in pregnancy than on Day 13 of the estrous cycle. In conclusion, enzymatic activity of PGDH may play an important role in the mechanism involved in luteal resistance to the luteolytic effects of PGF(2alpha).  相似文献   

17.
Prostaglandin F2 alpha (PGF2 alpha) release from the uterus causes luteolysis in ruminants, and oxytocin is thought to be a regulator of this release. In the present study, we have examined the mechanisms involved in oxytocin stimulation of PGF2 alpha secretion by bovine endometrium in vitro. Endometrial tissue explants, obtained from heifers at Day 19 or 20 (n = 3) and Day 0 (estrus, n = 5) of the estrous cycle, were incubated for 2 h and 6 h, and PGF2 alpha concentration in the medium was determined by radioimmunoassay (RIA). Basal PGF2 alpha release increased for up to 6 h and was significantly stimulated after 2 h of incubation with 100 microU and 1000 microU of oxytocin at Day 0 but not at Day 19 or 20. Secretion of PGF2 alpha was not affected by cholera toxin (10 ng/ml) or the cyclic nucleotide analogs dibutyryl cyclic adenosine 3',5'-monophosphate and dibutyryl cyclic guanosine 3',5'-monophosphate at a concentration of 1 mM. A protein kinase A inhibitor (500 microM) had no effect on the oxytocin-induced release of PGF2 alpha. Both the phorbol ester, 12-myristate-13-acetate (100 mM), and the non-phorbol stimulator of protein kinase C, 1-octanoyl-2-acetylglycerol (500 microM), significantly stimulated PGF2 alpha secretion to the same extent as oxytocin. Neither basal nor stimulated PGF2 alpha release was affected by the calcium ionophore A23187 (0.1-5.0 microM). However, PGF2 alpha secretion was sensitive to cycloheximide (1 microgram/ml) suggesting that protein synthesis may be involved. In conclusion, these data suggest that the stimulation of PGF2 alpha by oxytocin is via the protein kinase C effector pathway.  相似文献   

18.
Western blotting was used to identify the array of protein kinase C (PKC) isozymes expressed in the early (Day 4) and midcycle (Day 10) bovine corpus luteum (CL). PCKalpha, betaI, betaII, epsilon, and micro isozymes were detected in total protein samples prepared from both Day-4 and Day-10 corpora lutea. In contrast, specific antibodies for PKCgamma, eta, lambda, and theta isozymes failed to detect protein bands in the luteal samples. PKCbetaII and epsilon isozymes were expressed differentially at these two developmental stages of the bovine CL. In the Day-4 luteal samples, PKCepsilon was barely detectable; in contrast, in the Day-10 samples, the actin-corrected ratio for PKCepsilon was 1.16 +/- 0.13. This ratio was higher than the detected ratio for PKCbetaI and micro at this developmental phase of the CL (P < 0.01), but it was comparable with the ratio detected for the PCKalpha and betaII. The amount of PKCbetaII was, although not as dramatic, also greater in the Day-10 CL (actin-corrected ratio was 0.85 +/- 0.2) than in the Day-4 CL (0.35 +/- 0.09 [P < 0.01]). The actin-corrected ratios for all other PKC isozymes, alpha (Day 4 = 0.93 +/- 0.16, Day 10 = 0.97 +/- 0.09), betaI (Day 4 = 0.54 +/- 0.073, Day 10 = 0.48 +/- 0.74), and micro (Day 4 = 0.21 +/- 0.042, Day 10 = 0.21 +/- 0.38) were not different at these 2 days of the cycle. An experiment was designed to test whether activation of specific isozymes differed between CL that do or do not regress in response to PGF(2alpha). Bovine CL from Day 4 and Day 10 of the estrous cycle were collected and 1 mm CL fragments were treated in vitro for 0, 2.5, 5, 10 or 20 min with PGF(2alpha) (0.1, 1.0, and 10 nM) or minimal essential medium-Hepes vehicle. Translocation of PKC from cytoplasm to membrane fraction was used as indication of PKC activation by PGF(2alpha). Evidence for PKC activation was observed in both Day-4 and Day-10 luteal samples treated with 10 nM PGF(2alpha). Therefore, if PKC, an intracellular mediator associated with the luteal PGF(2alpha) receptor, contributes to the lesser sensitivity of the Day-4 CL, it is likely due to the differential expression of the epsilon and betaII isozymes of PKC at this stage and not due to an inability of the PGF(2alpha) receptor to activate the isozymes expressed in the early CL.  相似文献   

19.
The present study examined the role of intra-luteal prostaglandin (PG) F(2alpha), progesterone (P4) and oxytocin (OT) on the corpus luteum function by using specific hormone antagonists. Luteal cells from the developing CL (days 5-7 of the estrous cycle) were exposed to P4 antagonist (onapristone, OP, 10(-4)M), OT antagonist (atosiban, AT; 10(-6)M) or indomethacin (INDO; 10(-4)M), for 12h and then stimulated with PGF(2alpha) (10(-8)M) for 4h. Pre-treatment of the cells with OP, AT or INDO resulted in an increase in P4 secretion in response to PGF(2alpha). To examine the temporal effects of P4, OT and PGs on P4 secretion, dispersed luteal cells were pre-exposed to OP, AT or INDO for 1, 2, 4, 6 or 12h. Prostaglandin F(2alpha) stimulated P4 secretion (P<0.05) after 2h of pre-exposition. In the microdyalisis study, the spontaneous release of P4 from developing CL tissue was of pulsatile nature with irregular peaks at 1-2h intervals. Treatment with OP increased the number of P4 peaks (P<0.05), whereas AT and INDO significantly reduced the number of P4 peaks detected (P<0.05). Interestingly, INDO completely blocked the pulsatile nature in the release of P4, but it secretion remained stable throughout the experimental period. These results demonstrate that luteal PGF(2alpha), OT, and P4 are components of an autocrine/paracrine intra-ovarian regulatory system responsible for the episodic (pulsatile) release of P4 from the bovine CL during the early luteal phase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号