首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strain Lep1, isolated from a bacterial consortium capable of aerobic degradation of 4-methylquinoline (4-MQ), was chosen for further characterization as it was the only member of the consortium able to grow on 4-MQ in pure culture. Lep1 was identified as a Sphingomonas sp. based on phylogenetic analysis of 16S rDNA. Furthermore, the presence of sphingolipids and 2-hydroxy fatty acids in the membrane, and a 63% G + C ratio supports the placement of Lep1 in this genus. Additional genetic, physiological, and ecological characterization of bacteria such as Lep1 will allow for the potential exploitation of degradative strains for purposes of bioremediation of contaminated soils.  相似文献   

2.
A soil consortium was tested for its ability to degrade reformulated gasoline, containing methyl tert-butyl ether (MTBE). Reformulated gasoline was rapidly degraded to completion. However, MTBE tested alone was not degraded. A screening was carried out to identify compounds in gasoline that participate in cometabolism with MTBE. Aromatic compounds (benzene, toluene, xylenes) and compounds structurally similar to MTBE (tert-butanol, 2,2-dimethylbutane, 2,2,4-trimethylpentane) were unable to cometabolize MTBE. Cyclohexane was resistant to degradation. However, all n-alkanes tested for cometabolic activity (pentane, hexane, heptane) did enable the biodegradation of MTBE. Among the alkanes tested, pentane was the most efficient (200 &mgr;g/day). Upon the depletion of pentane, the consortium stopped degrading MTBE. When the consortium was spiked with pentane, MTBE degradation continued. When the ratio of MTBE to pentane was increased, the amount of MTBE degraded by the consortium was higher. Finally, diethylether was tested for cometabolic degradation with MTBE. Both compounds were degraded, but the process differed from that observed with pentane.  相似文献   

3.
bacterial consortium has been isolated containing Pseudomonas spp. strains S1 and S2, which was able to degrade p‐nitrophenol (PNP). The strains were isolated from agricultural soil contaminated with organophosphorus pesticides. Pseudomonas spp. strain S2 could convert p‐nitrophenol to 4‐nitrocatechol (4NC) after pre‐exposure to phenol, when PNP was used as the only carbon source in the medium. Pseudomonas spp. strain S2, when mixed with strain S1 in the ratio 1:5 respectively, decolorised PNP completely.  相似文献   

4.
Microbial degradation of quinoline and methylquinolines.   总被引:6,自引:4,他引:2       下载免费PDF全文
Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and P. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.  相似文献   

5.
Microbial degradation of quinoline and methylquinolines   总被引:12,自引:0,他引:12  
Several bacterial cultures were isolated that are able to degrade quinoline and to transform or to degrade methylquinolines. The degradation of quinoline by strains of Pseudomonas aeruginosa QP and P. putida QP produced hydroxyquinolines, a transient pink compound, and other undetermined products. The quinoline-degrading strains of P. aeruginosa QP and P. putida QP hydroxylated a limited number of methylquinolines but could not degrade them, nor could they transform 2-methylquinoline, isoquinoline, or pyridine. Another pseudomonad, Pseudomonas sp. strain MQP, was isolated that could degrade 2-methylquinoline. P. aeruginosa QP was able to degrade or to transform quinoline and a few methylquinolines in a complex heterocyclic nitrogen-containing fraction of a shale oil. All of the quinoline- and methylquinoline-degrading strains have multiple plasmids including a common 250-kilobase plasmid. The 225-, 250-, and 320-kilobase plasmids of the P. aeruginosa QP strain all contained genes involved in quinoline metabolism.  相似文献   

6.
Dinoseb (2-sec-butyl-4,6-dinitrophenol) has been a widely used herbicide that persists in some contaminated soils, and has been found in groundwaters, causing health and environmental hazards. Persistence in some soils may stem from a lack of dinoseb-degrading organisms. We established a chemostat environment that was strongly selective for aerobic (liquid phase) and anaerobic (sediment phase) bacteria able to degrade dinoseb. The chemostat yielded five taxonomically diverse aerobic isolates that could transform dinoseb to reduced products under microaerophilic or denitrifying conditions, but these organisms were unable to degrade the entire dinoseb molecule, and the transformed products formed multimeric material. The chemostat also yielded an anaerobic consortium of bacteria that could completely degrade dinoseb to acetate and CO2 when the Eh of the medium was less than-200 mV. The consortium contained at least three morphologically different bacterial species. HPLC analysis indicated that dinoseb was degraded sequentially via several as yet unidentified products. Degradation of these intermediates was inhibited by addition of bromoethane sulfonic acid. GC-MS analysis of metabolites in culture medium suggested that regiospecific attacks occurred non-sequentially on both the nitro groups and the side-chain of dinoseb. The consortium was also able to degrade 4,6-dinitro-o-cresol, 3,5-dinitrobenzoic acid, 2,4-dinitrotoluene, and 2,6-dinitrotoluene via a similar series of intermediate products. The consortium was not able to degrade 2,4-dinitrophenol. To our knowledge, this is the first report of strictly anaerobic biodegradation of an aromatic compound containing a multicarbon, saturated hydrocarbon side chain.Abbreviations BESA bromoethane sulfonic acid - RAMM reduced anaerobic mineral medium  相似文献   

7.
Burkholderia sp. strain SJ98 (DSM 23195) was previously isolated and characterized for degradation and co-metabolic transformation of a number nitroaromatic compounds. In the present study, we evaluated its metabolic activity on chlorinated nitroaromatic compounds (CNACs). Results obtained during this study revealed that strain SJ98 can degrade 2-chloro-4-nitrophenol (2C4NP) and utilize it as sole source of carbon, nitrogen, and energy under aerobic conditions. The cells of strain SJ98 removed 2C4NP from the growth medium with sequential release of nearly stoichiometric amounts of chloride and nitrite in culture supernatant. Under aerobic degradation conditions, 2C4NP was transformed into the first intermediate that was identified as p-nitrophenol by high-performance liquid chromatography, LCMS-TOF, and GC-MS analyses. This transformation clearly establishes that the degradation of 2C4NP by strain SJ98 is initiated by "reductive dehalogenation"; an initiation mechanism that has not been previously reported for microbial degradation of CNAC under aerobic conditions.  相似文献   

8.
Bisphenol A (2,2-bis(4-hydroxyphenyl) propane, BPA), which is used as a synthetic resin material or a plasticizer, is a pollutant that␣possesses endocrine-disrupting activity. Bioremediation of BPA is used to decrease its polluting effects, and here we report a novel bacterial strain AO1, which is able to degrade BPA. This strain was isolated using enrichment cultivation from a soil sample from a vegetable-growing field; the sample was one of 500 soil samples collected across Japan. Strain AO1 degraded 100 mg/l BPA to an undetectable level within 6 h in MYPG medium (containing malt extract, yeast extract, peptone, and glucose) and within 48 h in minimum medium containing 1% glucose at 30°C. Strain AO1 can utilize BPA as a sole source of carbon and as an energy source under aerobic conditions. The estrogenic activity of BPA in MYPG medium was ultimately reduced by strain AO1, although the activity initially increased. Taxonomical analysis showed that strain␣AO1 is closely related to Sphingomonas chlorophenolicum and S. herbicidovorans, neither of which have a capacity for BPA degradation. DNA–DNA hybridization showed that strain AO1 is a novel species of the Sphingomonas genus, and we designated AO1 as S. bisphenolicum.  相似文献   

9.
以正十六烷为唯一碳源,从长期受石油污染的土壤中筛选到一株高效降解正十六烷的菌株LAM0048。通过形态学观察、生理生化试验、细胞化学组分分析、16S rRNA基因序列分析、细胞脂肪酸和极性脂试验,确定其属于棒杆菌亚目(Corynebacterineae)、诺卡菌科(Nocardiaceae)、戈登氏属(Gordonia),且可能为戈登氏属的一株新种。采用单因素实验对菌株LAM0048在无机盐培养基中降解正十六烷的降解率进行初步探讨,发现该菌株能在以正十六烷为唯一碳源的培养基中生长,菌株LAM0048能够在36 h内完全降解0.05%(V/V)的正十六烷,当烷烃浓度达到1.0%(V/V)时,降解率达46.4%。结果表明LAM0048是一株具有耐受高浓度烷烃的石油降解菌,在石油污染环境的微生物修复中具有一定的应用潜力。  相似文献   

10.
This study aimed to develop technology enhancing the biodegradation efficacy against organophosphorus fungicide with biofilm-forming bacteria in situ. Using the crystal violet staining method, two bacterial strains having biofilm formation capability were isolated and identified as Pseudomonas sp. C7 and Bacillus sp. E5. Compared with the culture of tolclofos-methyl degrader Sphingomonas sp. 224, biofilm formation was improved by co-inoculation with biofilm-forming bacterium Bacillus sp. E5. Evaluated in liquid culture conditions, this two-species mixed consortium was observed to degrade tolclofos-methyl more effectively than Sphingomonas sp. 224 alone, with an approximately 90% degradation efficiency within 48 h of dosing. The improved effectiveness of the consortium biofilm was reflected using soil in situ with an approximately 7% increased degradation ratio over Sphingomonas sp. 224 alone. This is the first report demonstrating improved bioremediation degradation efficacy against tolclofos-methyl exhibited by a consortium biofilm. This work presents a possible effective bioremediation strategy using a specific biofilm composition against pollutants containing organophosphorus compounds in situ.  相似文献   

11.
An aerobic bacterial consortium was shown to degrade 2,4,6-trinitrotoluene (TNT). At an initial concentration of 100 ppm, 100% of the TNT was transformed to intermediates in 108 h. Radiolabeling studies indicated that 8% of [14C]TNT was used as biomass and 3.1% of [14C]TNT was mineralized. The first intermediates observed were 4-amino-2,6-dinitrotoluene and its isomer 2-amino-4,6-dinitrotoluene. Prolonged incubation revealed signs of ring cleavage. Succinate or another substrate—e.g., malic acid, acetate, citrate, molasses, sucrose, or glucose—must be added to the culture medium for the degradation of TNT. The bacterial consortium was composed of variousPseudomonas spp. The results suggest that the degradation of TNT is accomplished by co-metabolism and that succinate serves as the carbon and energy source for the growth of the consortium. The results also suggest that this soil bacterial consortium may be useful for the decontamination of environmental sites contaminated with TNT.  相似文献   

12.
A study was made on the use of a mixed microalgal consortium to degrade p-nitrophenol. The consortium was obtained from a microbial community in a waste container fed with the remains and by-products of medium culture containing substituted aromatic pollutants (nitrophenols, chlorophenols, fluorobenzene). After selective enrichment with p-nitrophenol (p-NP), followed by an antibiotic treatment, an axenic microalgal consortium was recovered, which was able to degrade p-nitrophenol. At a concentration of 50 mg L–1, total degradation occurred within 5 days. Two species, Chlorella vulgaris var. vulgaris f. minuscula and Coenochloris pyrenoidosa, were isolated from the microalgal consortium. The species were able to accomplish p-NP biodegradation when cultured separately, although Coenochloris pyrenoidosa was more efficient, achieving the same degradation rate as the original axenic microalgal consortium. When Coenochloris pyrenoidosa was associated with Chlorella vulgaris in a 3:1 ratio, complete removal of the nitro-aromatic compound occurred within three days. This is apparently the first report on the degradation of a nitro-aromatic compound by microalgae.  相似文献   

13.
Topsoil samples were collected from eight golf courses in Yamaguchi Prefecture, Japan, and enrichment cultures were carried out with a basal-salt medium containing 0.2% 4-tert-octylphenol polyethoxylate (OPPEO) as sole carbon source. OPPEO-degrading activity was detected in one of the samples, from which a strain of OPPEO-degrading bacterium was isolated. The isolated bacterium grew on a nutritionally enriched medium (NE medium) containing 0.2% OPPEO as sole carbon source, and accumulated 4-tert-octylphenol diethoxylate (OP2EO) (63%), 4-tert-octylphenol triethoxylate (OP3EO) (14%), and 4-tert-octylphenol monoethoxylate (OP1EO) (2%) after 7 d cultivation under aerobic conditions. The addition of clay mineral (vermiculite) to the medium accelerated the degradation of OP2EO (40%) and OP3EO (4%) to OP1EO (23%). This is the first report about bacteria that can degrade OPPEO to OP1EO under aerobic conditions. The strain was identified as Sphingomonas macrogoltabidus, based on the homology of a 16S rDNA sequence.  相似文献   

14.
Anaerobic biodegradation of pentachlorophenol (PCP) in a contaminated soil from a wood-treating industrial site was studied in soil slurry microcosms inoculated with a PCP-degrading methanogenic consortium. When the microcosms containing 10%–40% (w/v) soil were inoculated with the consortium, more than 90% of the PCP was removed in less than 30 days at 29 °C. Less-chlorinated phenols, mainly 3-chlorophenol were slowly degraded and accumulated in the cultures. Addition of glucose and sodium formate to the microcosms was not necessary, suggesting that the organic compounds in the soil can sustain the dechlorinating activity. Inoculation of Desulfitobacterium frappieri strain PCP-1 along with a 3-chlorophenol-degrading consortium in the microcosms also resulted in the rapid dechlorination of PCP and the slow degradation of 3-chlorophenol. Competitive polymerase chain reaction experiments showed that PCP-1 was present at the same level throughout the 21-day biotreatment. D. frappieri, strain PCP-1, inoculated into the soil microcosms, was able to remove PCP from soil containing up to 200 mg PCP/kg soil. However, reinoculation of the strain was necessary to achieve more than 95% PCP removal with a concentration of 300 mg and 500 mg PCP/kg soil. These results demonstrate that D. frappieri strain PCP-1 can be used effectively to dechlorinate PCP to 3-chlorophenol in contaminated soils. Received: 14 November 1997 / Received revision: 29 January 1998 / Accepted: 24 February 1998  相似文献   

15.
The degradation of three polycyclic aromatic hydrocarbons (PAH), pyrene (PYR), benz[a]anthracene (BAA), and benzo[a]pyrene (BaP), by Mycobacterium sp. strain RJGII-135 was studied. The bacterium was isolated from an abandoned coal gasification site soil by analog enrichment techniques and found to mineralize [14C]PYR. Further degradation studies with PYR showed three metabolites formed by Mycobacterium sp. strain RJGII-135, including 4,5-phenanthrene-dicarboxylic acid not previously isolated, 4-phenanthrene-carboxylic acid, and 4,5-pyrene-dihydrodiol. At least two dihydrodiols, 5,6-BAA-dihydrodiol and 10,11-BAA-dihydrodiol, were confirmed by high-resolution mass spectral and fluorescence analyses as products of the biodegradation of BAA by Mycobacterium sp. strain RJGII-135. Additionally, a cleavage product of BAA was also isolated. Mass spectra and fluorescence data support two different routes for the degradation of BaP by Mycobacterium sp. strain RJGII-135. The 7,8-BaP-dihydrodiol and three cleavage products of BaP, including 4,5-chrysene-dicarboxylic acid and a dihydro-pyrene-carboxylic acid metabolite, have been isolated and identified as degradation products formed by Mycobacterium sp. strain RJGII-135. These latter results represent the first example of the isolation of BaP ring fission products formed by a bacterial isolate. We propose that while this bacterium appears to attack only one site of the PYR molecule, it is capable of degrading different sites of the BAA and BaP molecules, and although the sites of attack may be different, the ability of this bacterium to degrade these PAH is well supported. The proposed pathways for biodegradation of these compounds by this Mycobacterium sp. strain RJGII-135 support the dioxygenase enzymatic processes reported previously for other bacteria. Microorganisms like Mycobacterium sp. strain RJGII-135 will be invaluable in attaining the goal of remediation of sites containing mixtures of these PAH.  相似文献   

16.
Four bacterial strains were isolated from a cyanophycin granule polypeptide (CGP)-degrading anaerobic consortium, identified by 16S rRNA gene sequencing, and assigned to species of the genera Pseudomonas, Enterococcus, Clostridium, and Paenibacillus. The consortium member responsible for CGP degradation was assigned as Pseudomonas alcaligenes strain DIP1. The growth of and CGP degradation by strain DIP1 under anaerobic conditions were enhanced but not dependent on the presence of nitrate as an electron acceptor. CGP was hydrolyzed to its constituting beta-Asp-Arg dipeptides, which were then completely utilized within 25 and 4 days under anaerobic and aerobic conditions, respectively. The end products of CGP degradation by strain DIP1 were alanine, succinate, and ornithine as determined by high-performance liquid chromatography analysis. The facultative anaerobic Enterococcus casseliflavus strain ELS3 and the strictly anaerobic Clostridium sulfidogenes strain SGB2 were coisolates and utilized the beta-linked isodipeptides from the common pool available to the mixed consortium, while the fourth isolate, Paenibacillus odorifer strain PNF4, did not play a direct role in the biodegradation of CGP. Several syntrophic interactions affecting CGP degradation, such as substrate utilization, the reduction of electron acceptors, and aeration, were elucidated. This study demonstrates the first investigation of CGP degradation under both anaerobic and aerobic conditions by one bacterial strain, with regard to the physiological role of other bacteria in a mixed consortium.  相似文献   

17.
Two bacterial strains were isolated from forest soil by selective enrichment of the mineral medium containing 4-nitropyrocatechol as the sole carbon and energy source. Both strains could utilize 4-nitropyrocatechol and 5-nitroguaiacol. Degradation of 5-nitroguaiacol and stoichiometric release of nitrites was measured during its degradation both in growing culture and for resting cells. Both strains were unable to degrade other nitroaromatic compounds such as 4-nitroguaiacol, 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrobenzoic acid, 4,5-dimethoxy-2-nitrobenzoic acid and 2,3-difluoro-6-nitrophenol. One strain was identified as Rhodococcus opacus and the second one as Rhodococcus sp.  相似文献   

18.
A microbial consortium with a high cellulolytic activity was enriched to degrade raw corn stover powder (RCSP). This consortium degraded more than 51% of non-sterilized RCSP or 81% of non-sterilized filter paper within 8 days at 40 °C under facultative anoxic conditions. Cellulosome-like structures were observed in scanning electron micrographs (SEM) of RCSP degradation residue. The high cellulolytic activity was maintained during 40 subcultures in a medium containing cellulosic substrate. Small ribosomal gene sequence analyses showed the consortium contains uncultured and cultured bacteria with or without cellulolytic activities. Among these bacteria, some are anaerobic others aerobic. Analyses of the culture filtrate showed a typical anoxic polysaccharide fermentation during the culturing process. Reducing sugar concentration increased at early stage followed by various fermentation products that were consumed at the late stage.  相似文献   

19.
A bacterium capable of assimilating 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), strain BP-7, was isolated from offshore seawater samples on a medium containing bisphenol A as sole source of carbon and energy, and identified as Sphingomonas sp. strain BP-7. Other strains, Pseudomonas sp. strain BP-14, Pseudomonas sp. strain BP-15, and strain no. 24A, were also isolated from bisphenol A-enrichment culture of the seawater. These strains did not degrade bisphenol A, but accelerated the degradation of bisphenol A by Sphingomonas sp. strain BP-7. A mixed culture of Sphingomonas sp. strain BP-7 and Pseudomonas sp. strain BP-14 showed complete degradation of 100 ppm bisphenol A within 7 d in SSB-YE medium, while Sphingomonas sp. strain BP-7 alone took about 40 d for complete consumption of bisphenol A accompanied by accumulation of 4-hydroxyacetophenone. On a nutritional supplementary medium, Sphingomonas sp. strain BP-7 completely degraded bisphenol A and 4-hydroxyacetophenone within 20 h. The strain degraded a variety of bisphenols, such as 1,1-bis(4-hydroxyphenyl)ethane, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, and 1,1-bis(4-hydroxyphenyl)cyclohexane, and hydroxy aromatic compounds such as 4-hydroxyacetophenone, 4-hydroxybenzoic acid, catechol, protocatechuic acid, and hydroquinone. The strain did not degrade bis(4-hydroxyphenyl)methane, bis(4-hydroxyphenyl)sulfone, or bis(4-hydroxyphenyl)sulfide.  相似文献   

20.
AIMS: An agar medium containing a range of related chlorophenoxyalkanoic acid herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 2-methyl-4-chlorophenoxyacetic acid (MCPA), racemic mecoprop, (R)-mecoprop and racemic 2,4-DP (2-(2,4-dichlorophenoxy) propionic acid) was developed to assess the catabolic activity of a range of degradative strains. METHODS AND RESULTS: The medium was previously developed containing 2,4-D as a carbon source to visualise degradation by the production of dark violet bacterial colonies. Strains isolated on mecoprop were able to degrade 2,4-D, MCPA, racemic mecoprop, (R)-mecoprop and racemic 2,4-DP, whereas the 2,4-D-enriched strains were limited to 2,4-D and MCPA as carbon sources. Sphingomonas sp. TFD44 solely degraded the dichlorinated compounds, 2,4-D, racemic 2,4-DP and 2,4-DB (2,4-dichlorophenoxybutyric acid). However, Sphingomonas sp. AW5, originally isolated on 2,4,5-T, was the only strain to degrade the phenoxybutyric compound MCPB (4-chloro-2-methylphenoxybutyric acid). CONCLUSION: This medium has proved to be a very effective and rapid method for screening herbicide degradation by bacterial strains. SIGNIFICANCE AND IMPACT OF THE STUDY: This method reduces the problem of assessing the biodegradability of this family of compounds to an achievable level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号