共查询到20条相似文献,搜索用时 15 毫秒
1.
Thomas Regnier Diganta Sarma Koushi Hidaka Usman Bacha Ernesto Freire Yoshio Hayashi Yoshiaki Kiso 《Bioorganic & medicinal chemistry letters》2009,19(10):2722-2727
A series of trifluoromethyl, benzothiazolyl or thiazolyl ketone-containing peptidic compounds as SARS-CoV 3CL protease inhibitors were developed and their potency was evaluated by in vitro protease inhibitory assays. Three candidates had encouraging results for the development of new anti-SARS compounds. 相似文献
2.
Fengtian Xue Jinwen Huang Haitao Ji Jianguo Fang Huiying Li Pavel Martásek Linda J. Roman Thomas L. Poulos Richard B. Silverman 《Bioorganic & medicinal chemistry》2010,18(17):6526-6537
Selective inhibitors of neuronal nitric oxide synthase (nNOS) have the potential to develop into new neurodegenerative therapeutics. Recently, we described the discovery of novel nNOS inhibitors (1a and 1b) based on a cis-pyrrolidine pharmacophore. These compounds and related ones were found to have poor blood–brain barrier permeability, presumably because of the basic nitrogens in the molecule. Here, a series of monocationic compounds was designed on the basis of docking experiments using the crystal structures of 1a,b bound to nNOS. These compounds were synthesized and evaluated for their ability to inhibit neuronal nitric oxide synthase. Despite the excellent overlap of these compounds with 1a,b bound to nNOS, they exhibited low potency. This is because they bound in the nNOS active site in the normal orientation rather than the expected flipped orientation used in the computer modeling. The biphenyl or phenoxyphenyl tail is disordered and does not form good protein–ligand interactions. These studies demonstrate the importance of the size and rigidity of the side chain tail and the second basic amino group for nNOS binding efficiency and the importance of the hydrophobic tail for conformational orientation in the active site of nNOS. 相似文献
3.
Ghosh AK Gong G Grum-Tokars V Mulhearn DC Baker SC Coughlin M Prabhakar BS Sleeman K Johnson ME Mesecar AD 《Bioorganic & medicinal chemistry letters》2008,18(20):5684-5688
Design, synthesis and biological evaluation of a series of 5-chloropyridine ester-derived severe acute respiratory syndrome-coronavirus chymotrypsin-like protease inhibitors is described. Position of the carboxylate functionality is critical to potency. Inhibitor 10 with a 5-chloropyridinyl ester at position 4 of the indole ring is the most potent inhibitor with a SARS-CoV 3CLpro IC(50) value of 30 nM and an antiviral EC(50) value of 6.9 microM. Molecular docking studies have provided possible binding modes of these inhibitors. 相似文献
4.
Karl A. Scheidt William R. Roush James H. McKerrow Paul M. Selzer Elizabeth Hansell Philip J. Rosenthal 《Bioorganic & medicinal chemistry》1998,6(12):2477-2494
The inhibition of cysteine proteases is being studied as a strategy to combat parasitic diseases such as Chagas' disease, leishmaniasis, and malaria. Cruzain is the major cysteine protease of Trypanosoma cruzi, the etiologic agent of Chagas' disease. A crystal structure of cruzain, covalently inactivated by fluoromethyl ketone inhibitor 1 (Cbz-Phe-Ala-FMK), was used as a template to design potential inhibitors. Conformationally constrained γ-lactams containing electrophilic aldehyde (12, 17, 18, 25, 26, and 29) or vinyl sulfone (43, 44, and 46) units were synthesized. Constrained lactam 26 had IC50 values of ca. 20 nM against the Leishmania major protease and ca. 50 nM versus falcipain, an important cysteine protease isolated from Plasmodium falciparum. However, all of the conformationally constrained inhibitors were weak inhibitors of cruzain, compared to unconstrained peptide aldehyde (e.g. 5) and vinyl sulfone inhibitors (e.g. 48, which proved to be an excellent inhibitor of cruzain with an apparent second order inhibition rate constant (kinact/Ki) of 634,000 s−1M−1). A significant reduction in activity was also observed with acyclic inhibitors 30 and 51 containing -methyl phenylalanine residues at the P2 position. These data indicate that the pyrrolidinone ring, especially the quarternary center at P2, interferes with the normal substrate binding mode with cruzain, but not with falcipain or the leishmania protease. 相似文献
5.
William Vernier Wesley Chong David Rewolinski Samantha Greasley Thomas Pauly Morena Shaw Dac Dinh Rose Ann Ferre Seiji Nukui Martha Ornelas Eric Reyner 《Bioorganic & medicinal chemistry》2010,18(9):3307-3319
A novel series of potent thioether benzenesulfonamide inhibitors of carbonic anhydrases II and IV was discovered using structure-based drug design. Synthesis, structure–activity relationship, and optimization of physicochemical properties are described. Low nanomolar potency was achieved, and selected compounds with improved thermodynamic solubility showed promising in vitro inhibition of carbonic anhydrase activity in rabbit iris ciliary body homogenate. 相似文献
6.
Yong Wang Hong Lu Qiang Zhu Shibo Jiang Yun Liao 《Bioorganic & medicinal chemistry letters》2010,20(1):189-192
A new series of N-carboxyphenylpyrrole ligands were designed using GeometryFit based on an X-ray crystal structure of gp41. The synthesized ligands showed significant inhibitory activities against HIV gp41 6-helix bundle formation, HIV-1 mediated cell–cell fusion and HIV-1 replication. 相似文献
7.
Regulators of G-protein signaling (RGS) proteins form a multifunctional signaling family. A key role of RGS proteins is binding to the G-protein Galpha-subunit and acting as GTPase-activating proteins (GAPs), thereby rapidly terminating G protein-coupled receptor (GPCR) signaling. Using the published RGS4-Gialpha1 X-ray structure we have designed and synthesized a series of cyclic peptides, modeled on the Gialpha Switch I region, that inhibit RGS4 GAP activity. These compounds should prove useful for elucidating RGS-mediated activity and serve as a starting point for the development of a novel class of therapeutic agent. 相似文献
8.
《Bioorganic & medicinal chemistry》2016,24(13):3035-3042
Severe acute respiratory syndrome (SARS) led to a life-threatening form of atypical pneumonia in late 2002. Following that, Middle East Respiratory Syndrome (MERS-CoV) has recently emerged, killing about 36% of patients infected globally, mainly in Saudi Arabia and South Korea. Based on a scaffold we reported for inhibiting neuraminidase (NA), we synthesized the analogues and identified compounds with low micromolar inhibitory activity against 3CLpro of SARS-CoV and MERS-CoV. Docking studies show that a carboxylate present at either R1 or R4 destabilizes the oxyanion hole in the 3CLpro. Interestingly, 3f, 3g and 3m could inhibit both NA and 3CLpro and serve as a starting point to develop broad-spectrum antiviral agents. 相似文献
9.
Interleukin-1β converting enzyme contributes in various inflammatory and autoimmune diseases by maturing pro-inflammatory cytokines IL-1β, IL-18 and IL-33. Therefore, inhibition caspase-1 may provide a potential therapeutic strategy for the treatment of chronic inflammatory diseases. Here we have reported structure-based design, synthesis and biological evaluation of 2,4-diaminopyrimidine derivatives (6a-6w) as potential caspase-1 inhibitors. Six compounds 6m, 6n, 6o, 6p, 6q and 6r showed significant enzymatic inhibition with IC50 ranging from 0.022 to 0.078 µM. These compounds also displayed excellent cellular potency at sub-micromolar concentration. Moreover, molecular docking studies provided the useful binding insights specific for caspase-1 inhibition. All these results indicated that compounds 6m, 6n and 6o could be potential leads for the development of newer caspase-1 inhibitors as anti-inflammatory agents. 相似文献
10.
Tsuhako AL Brown DS Koltun ES Aay N Arcalas A Chan V Du H Engst S Franzini M Galan A Huang P Johnston S Kane B Kim MH Laird AD Lin R Mock L Ngan I Pack M Stott G Stout TJ Yu P Zaharia C Zhang W Zhou P Nuss JM Kearney PC Xu W 《Bioorganic & medicinal chemistry letters》2012,22(11):3732-3738
A series of substituted benzofuropyrimidinones with pan-PIM activities and excellent selectivity against a panel of diverse kinases is described. Initial exploration identified aryl benzofuropyrimidinones that were potent, but had cell permeability limitation. Using X-ray crystal structures of the bound PIM-1 complexes with 3, 5m, and 6d, we were able to guide the SAR and identify the alkyl benzofuropyrimidinone (6l) with good PIM potencies, permeability, and oral exposure. 相似文献
11.
Akira Kaieda Masashi Takahashi Takafumi Takai Masayuki Goto Takahiro Miyazaki Yuri Hori Satoko Unno Tomohiro Kawamoto Toshimasa Tanaka Sachiko Itono Terufumi Takagi Teruki Hamada Mikio Shirasaki Kengo Okada Gyorgy Snell Ken Bragstad Bi-Ching Sang Osamu Uchikawa Seiji Miwatashi 《Bioorganic & medicinal chemistry》2018,26(3):647-660
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group. 相似文献
12.
Raboisson P Marugán JJ Schubert C Koblish HK Lu T Zhao S Player MR Maroney AC Reed RL Huebert ND Lattanze J Parks DJ Cummings MD 《Bioorganic & medicinal chemistry letters》2005,15(7):1857-1861
Crystallographic analysis of ligands bound to HDM2 suggested that 7-substituted 1,4-diazepine-2,5-diones could mimic the alpha-helix of p53 peptide and may represent a promising scaffold to develop HDM2-p53 antagonists. To verify this hypothesis, we synthesized and biologically evaluated 5-[(3S)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-7-phenyl-1,4-diazepin-1-yl]valeric acid (10) and 5-[(3S)-7-(2-bromophenyl)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-1,4-diazepin-1-yl]valeric acid (11). Preliminary in vitro testing shows that 10 and 11 substantially antagonize the binding between HDM2 and p53 with an IC(50) of 13 and 3.6 microM, respectively, validating the modeling predictions. Taken together with the high cell permeability of diazepine 11 determined in CACO-2 cells, these results suggest that 1,4-diazepine-2,5-diones may be useful in the treatment of certain cancers. 相似文献
13.
Kenji Namoto Finton Sirockin Holger Sellner Christian Wiesmann Frederic Villard Robert J. Moreau Eric Valeur Stephanie C. Paulding Simone Schleeger Kathrin Schipp Joachim Loup Lori Andrews Ryann Swale Michael Robinson Christopher J. Farady 《Bioorganic & medicinal chemistry letters》2018,28(5):906-909
The design and synthesis of macrocyclic inhibitors of human rhinovirus 3C protease is described. A macrocyclic linkage of the P1 and P3 residues, and the subsequent structure-based optimization of the macrocycle conformation and size led to the identification of a potent biochemical inhibitor 10 with sub-micromolar antiviral activity. 相似文献
14.
El-Hamamsy MH Smith AW Thompson AS Threadgill MD 《Bioorganic & medicinal chemistry》2007,15(13):4552-4576
Tuberculosis is an increasing threat, owing to the spread of AIDS and to the development of resistance of the causative organism, Mycobacterium tuberculosis, to the currently available drugs. Dihydrofolate reductase (DHFR) is an important enzyme of the folate cycle; inhibition of DHFR inhibits growth and causes cell death. The crystal structure of M. tuberculosis DHFR revealed a glycerol tightly bound close to the binding site for the substrate dihydrofolate; this glycerol-binding motif is absent from the human enzyme. A series of pyrimidine-2,4-diamines was designed with a two-carbon tether between a glycerol-mimicking triol and the 6-position of the heterocycle; these compounds also carried aryl substituents at the 5-position. These, their diastereoisomers, analogues lacking two hydroxy groups and analogues lacking the two-carbon spacing linker were synthesised by acylation of the anions derived from phenylacetonitriles with ethyl (4S,5R)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, ethyl (4S,5S)-4-benzyloxymethyl-2,2-dimethyl-1,3-dioxolane-4-propanoate, tetrahydrooxepin-2-one and 2,3-O-isopropylidene-d-erythronolactone, respectively, to give the corresponding alpha-acylphenylacetonitriles. Formation of the methyl enol ethers, condensation with guanidine and deprotection gave the pyrimidine-2,4-diamines. Preliminary assay of the abilities of these compounds to inhibit the growth of TB5 Saccharomyces cerevisiae carrying the DHFR genes from M. tuberculosis, human and yeast indicated that 5-phenyl-6-((3R,4S)-3,4,5-trihydroxypentyl)pyrimidine-2,4-diamine selectively inhibited M. tuberculosis DHFR and had little effect on the human or yeast enzymes. 相似文献
15.
Shao YM Yang WB Kuo TH Tsai KC Lin CH Yang AS Liang PH Wong CH 《Bioorganic & medicinal chemistry》2008,16(8):4652-4660
A series of trifluoromethyl ketones as SARS-CoV 3CL protease inhibitors was developed. The inhibitors were synthesized in four steps from commercially available compounds. Three different amino acids were explored in the P1-position and in the P2-P4 positions varying amino acids and long alkyl chain were incorporated. All inhibitors were evaluated in an in vitro assay using purified enzyme and fluorogenic substrate peptide. One of the inhibitors showed a time-dependent inhibition, with a K(i) value of 0.3 microM after 4h incubation. 相似文献
16.
Dragovich PS Prins TJ Zhou R Johnson TO Brown EL Maldonado FC Fuhrman SA Zalman LS Patick AK Matthews DA Hou X Meador JW Ferre RA Worland ST 《Bioorganic & medicinal chemistry letters》2002,12(5):733-738
The structure-based design, chemical synthesis, and biological evaluation of bicyclic 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors are described. An optimized compound is shown to exhibit antiviral activity when tested against a variety of HRV serotypes (EC(50)'s ranging from 0.037 to 0.162 microM). 相似文献
17.
Xu L Chong Y Hwang I D'Onofrio A Amore K Beardsley GP Li C Olson AJ Boger DL Wilson IA 《The Journal of biological chemistry》2007,282(17):13033-13046
The inosine monophosphate cyclohydrolase (IMPCH) component (residues 1-199) of the bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase (AICAR Tfase, residues 200-593)/IMPCH (ATIC) catalyzes the final step in the de novo purine biosynthesis pathway that produces IMP. As a potential target for antineoplastic intervention, we designed IMPCH inhibitors, 1,5-dihydroimidazo[4,5-c][1,2,6]thiadiazin-4(3H)-one 2,2-dioxide (heterocycle, 1), the corresponding nucleoside (2), and the nucleoside monophosphate (nucleotide) (3), as mimics of the tetrahedral intermediate in the cyclization reaction. All compounds are competitive inhibitors against IMPCH (K(i) values = 0.13-0.23 microm) with the simple heterocycle 1 exhibiting the most potent inhibition (K(i) = 0.13 microm). Crystal structures of bifunctional ATIC in complex with nucleoside 2 and nucleotide 3 revealed IMPCH binding modes similar to that of the IMPCH feedback inhibitor, xanthosine 5'-monophosphate. Surprisingly, the simpler heterocycle 1 had a completely different IMPCH binding mode and was relocated to the phosphate binding pocket that was identified from previous xanthosine 5'-monophosphate structures. The aromatic imidazole ring interacts with a helix dipole, similar to the interaction with the phosphate moiety of 3. The crystal structures not only revealed the mechanism of inhibition of these compounds, but they now serve as a platform for future inhibitor improvements. Importantly, the nucleoside-complexed structure supports the notion that inhibitors lacking a negatively charged phosphate can still inhibit IMPCH activity with comparable potency to phosphate-containing inhibitors. Provocatively, the nucleotide inhibitor 3 also binds to the AICAR Tfase domain of ATIC, which now provides a lead compound for the design of inhibitors that simultaneously target both active sites of this bifunctional enzyme. 相似文献
18.
Dong X Zhang Z Wen R Shen J Shen X Jiang H 《Bioorganic & medicinal chemistry letters》2006,16(22):5913-5916
MCSS and LeapFrog, two de novo drug design programs, were used for the novel indole-based PPARgamma ligands' study. The designed compounds were synthesized and tested for the PPARgamma protein binding activities in vitro. Out of the compounds that were synthesized, two molecules (compounds 14d and 7d) possessed potent PPARgamma protein binding activity close to rosiglitazone in vitro. 相似文献
19.
Daniela De Vita Fabiana Pandolfi Luigi Ornano Marta Feroci Isabella Chiarotto Ilaria Sileno 《Journal of enzyme inhibition and medicinal chemistry》2016,31(6):106-113
AbstractA series of N,N-dimethylcarbamates containing a N,N-dibenzylamino moiety was synthesized and tested to evaluate their ability to inhibit Acetylcholinesterase (AChE). The most active compounds 4 and 8, showed 85 and 69% of inhibition at 50?μM, respectively. Furthermore, some basic SAR rules were outlined: an alkyl linker of six methylene units is the best spacer between the carbamoyl and dibenzylamino moieties; electron-withdrawal substituents on aromatics rings of the dibenzylamino group reduce the inhibitory power. Compound 4 produces a slow onset inhibition of AChE and this is not due to the carbamoylation of the enzyme, as demonstrated by the time-dependent inhibition assay of AChE with compound 4 and by MALDI-TOF MS analysis of trypsinized AChE inhibited by compound 4. Instead, compound 4 could act as a slow-binding inhibitor of AChE, probably because of its high conformational freedom due to the linear alkyl chain. 相似文献
20.
MH Kim AL Tsuhako EW Co DT Aftab F Bentzien J Chen W Cheng S Engst L Goon RR Klein DT Le M Mac JJ Parks F Qian M Rodriquez TJ Stout JH Till KA Won X Wu FM Yakes P Yu W Zhang Y Zhao P Lamb JM Nuss W Xu 《Bioorganic & medicinal chemistry letters》2012,22(15):4979-4985
Variously substituted indolin-2-ones were synthesized and evaluated for activity against KDR, Flt-1, FGFR-1 and PDGFR. Extension at the 5-position of the oxindole ring with ethyl piperidine (compound 7i) proved to be the most beneficial for attaining both biochemical and cellular potencies. Further optimization of 7i to balance biochemical and cellular potencies with favorable ADME/ PK properties led to the identification of 8h, a compound with a clean CYP profile, acceptable pharmacokinetic and toxicity profiles, and robust efficacy in multiple xenograft tumor models. 相似文献