首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translational regulation of the protamine 1 mRNA is mediated by sequences in its 3' untranslated region. In this study, we demonstrate that a highly conserved sequence, the translational control element, is solely responsible for protamine 1 translational regulation. Mutation of the conserved sequence causes premature translation of a transgene containing a fusion between the human growth hormone coding sequence and the protamine 1 3' untranslated region. Temporal expression of the transgene was monitored in prepubertal animals by Northern and Western blotting and in adult animals by immunocytochemistry. Messenger RNAs lacking the translational control element sediment in the messenger ribonucleoprotein particle and ribosomal fractions of polysome gradients, suggesting that the translational control element is required for translational repression but not for incorporation of mRNAs into ribonucleoprotein particles.  相似文献   

2.
3.
4.
5.
6.
7.
Human translation elongation factor 1A (EF1A) is a member of a large class of mRNAs, including ribosomal proteins and other translation elongation factors, which are coordinately translationally regulated under various conditions. Each of these mRNAs contains a terminal oligopyrimidine tract (TOP) that is required for translational control. A human growth hormone (hGH) expression construct containing the promoter region and 5' untranslated region (UTR) of EF1A linked to the hGH coding region (EF1A/hGH) was translationally repressed following rapamycin treatment in similar fashion to endogenous EF1A in human B lymphocytes. Mutation of two nucleotides in the TOP motif abolished the translational regulation. Gel mobility shift assays showed that both La protein from human B lymphocyte cytoplasmic extracts as well as purified recombinant La protein specifically bind to an in vitro-synthesized RNA containing the 5' UTR of EF1A mRNA. Moreover, extracts prepared from rapamycin-treated cells showed increased binding activity to the EF1A 5' UTR RNA, which correlates with TOP mRNA translational repression. In an in vitro translation system, recombinant La dramatically decreased the expression of EF1A/hGH construct mRNA, but not mRNAs lacking an intact TOP element. These results indicate that TOP mRNA translation may be modulated through La binding to the TOP element.  相似文献   

8.
9.
10.
11.
Translation of the chloroplast psbC mRNA in Chlamydomonas reinhardtii has been shown previously to require interactions between its 5' untranslated region (5' UTR) and the functions encoded by two nuclear loci, which we name here TBC1 and TBC2. We show that a 97-nucleotide (nt) region located in the middle of the psbC 5' UTR is required for translation initiation. Unlike most procaryotic cis-acting translational control elements, this region has a translational activation function and is located 236 nt upstream from the GUG translation initiation codon. In vivo pulse-labeling of chloroplast-encoded proteins and analyses of the expression of chimeric reporter genes in vivo reveal that a mutation of a newly described locus, TBC3, restores translation from the psbC 5' UTR in the absence of either this cis-acting element or the wild-type trans-acting TBC1 function. These data demonstrate that sequences located in the middle of the psbC 5' UTR, TBC1, and TBC3 functionally interact to control the translation of the psbC mRNA.  相似文献   

12.
13.
Sidiropoulos KG  Pontrelli L  Adeli K 《Biochemistry》2005,44(37):12572-12581
Insulin has been shown to acutely regulate hepatic apolipoprotein B (apoB) secretion at both translational and post-translational levels; however, mechanisms of apoB mRNA translational control are largely unknown. Recent studies of apoB untranslated regions (UTRs) revealed a potentially important role for cis-trans interactions at the 5' and 3' UTRs. In the present paper, deletion constructs of the UTR regions of apoB revealed that the 5' UTR was necessary and sufficient for insulin to inhibit synthesis of apoB15. Metabolic radiolabeling and in vitro translation experiments in the presence of protease inhibitors confirmed that the effect of insulin on the apoB 5' UTR was translational in nature. Using the nondenaturing electrophoretic mobility shift assay (EMSA), protein-RNA complexes were detected binding to the apoB 5' and 3' UTRs. Denaturing EMSA identified a 110-kDa protein interacting at the 5' UTR. Nondenaturing EMSA determined that insulin altered binding of large protein complexes to the 5' UTR. Binding specificity was determined by competition with both specific and nonspecific competitors. Insulin treatment decreased binding of the 110-kDa protein to the 5' UTR as visualized by EMSA. Absence of insulin increased binding of this trans-acting factor to the 5' UTR by 2-fold. Analysis of the 3' UTR showed no significant insulin-mediated changes in binding of trans-acting factors. We thus propose the existence of a novel RNA-binding insulin-sensitive factor that binds to the 5' UTR and may regulate apoB mRNA translation. Perturbations in hepatic insulin signaling as observed in insulin-resistant states may alter cis-trans interactions at the 5' UTR, leading to alterations in the rate of apoB mRNA translation, thus contributing to apoB-lipoprotein overproduction.  相似文献   

14.
15.
Kozak M 《Gene》2004,343(1):41-54
The belief that initiation of translation requires communication between the 5' and 3' ends of the mRNA guides--or misguides--the interpretation of many experiments. The closed-loop model for initiation creates the expectation that sequences at the 3' end of eukaryotic mRNAs should regulate translation. This review looks closely at the evidence in three prominent cases where such regulation is claimed. The mRNAs in question encode 15-lipoxygenase, ceruloplasmin, and histones. Vertebrate histone mRNAs lack a poly(A) tail, instead of which a 3' stem-loop structure is said to promote translation by binding a protein which purportedly binds initiation factors. The proffered evidence for this hypothesis has many flaws. Temporal control of 15-lipoxygenase production in reticulocytes is often cited as another well-documented example of translational regulation via the 3' untranslated region, but inspection of the evidence reveals significant gaps and contradictions. Solid evidence is lacking also for the idea that a ribosomal protein binds to and shuts off translation of ceruloplasmin mRNA. Some viral RNAs that lack a poly(A) tail have alternative 3' structures which are said to promote translation via circularization of the mRNA, but in no case has this been shown convincingly. Interpretation of many experiments is compromised by possible effects of the 3' structures on mRNA stability rather than translation. The functional-half-life assay, which is often employed to rule out effects on mRNA stability, might not be adequate to settle the question. Other issues, such as the possibility of artifacts caused by overexpression of RNA-binding proteins, can complicate studies of translational regulation. There is no doubt that elements at the 3' end of eukaryotic mRNAs can regulate gene expression in a variety of ways. It has not been shown unequivocally that one of these ways involves direct participation of the 3' untranslated region in the initiation step of translation.  相似文献   

16.
17.
18.
The alternative polyadenylation of the mRNA encoding the amyloid precursor protein (APP) involved in Alzheimer's disease generates two molecules, with the first of these containing 258 additional nucleotides in the 3' untranslated region (3'UTR). We have previously shown that these 258 nucleotides increase the translation of APP mRNA injected in Xenopus oocytes (5). Here, we demonstrate that this mechanism occurs in CHO cells as well. We also present evidence that the 3'UTR containing 8 nucleotides more than the short 3'UTR allows the recovery of an efficiency of translation similar to that of the long 3'UTR. Moreover, the two guanine residues located at the 3' ends of these 8 nucleotides play a key role in the translational control. Using gel retardation mobility shift assay, we show that proteins from Xenopus oocytes, CHO cells, and human brain specifically bind to the short 3'UTR but not to the long one. The two guanine residues involved in the translational control inhibit this specific binding by 65%. These results indicate that there is a correlation between the binding of proteins to the 3'UTR of APP mRNA and the efficiency of mRNA translation, and that a GG motif controls both binding of proteins and translation.  相似文献   

19.
20.
BACKGROUND INFORMATION: Maskin is a member of the TACC (transforming acidic coiled-coil) domain proteins found in Xenopus laevis oocytes and embryos. It has been implicated in the co-ordination of the spindle and has been reported to mediate translational repression of cyclin B1 mRNA. RESULTS: In the present study, we report that maskin mRNA is translationally repressed at the level of initiation in stage 4 oocytes and becomes activated in stage 6 oocytes. The translational repression of maskin mRNA correlates with the presence of a short poly(A) tail on this mRNA in stage 4 oocytes. The 3'-UTR (untranslated region) of maskin can confer the translational regulation to a reporter mRNA, and so can the 3'-UTR of human TACC3. A conserved GUCU repeat element was found to repress translation in both stage 4 and stage 6 oocytes, but deletion of this element did not abrogate repression in stage 4 oocytes. UV cross-linking experiments indicated that overlapping sets of proteins bind efficiently to both the maskin and the cyclin B1 3'-UTRs. As reported previously, CPEB [CPE (cytoplasmic polyadenylation element)-binding protein] binds to the cyclin B1 3'-UTR, but its binding to the maskin 3'-UTR is minimal. By RNA affinity chromatography and MS, we identified the EDEN-BP [EDEN (embryonic deadenylation element)-binding protein] as one of the proteins binding to both the maskin and the cyclin B1 3'-UTRs. CONCLUSIONS: Maskin mRNA is translationally regulated by at least two repressor elements and an activation element. One of the repessor elements is the evolutionarily conserved GUCU repeat. EDEN-BP binds to both the maskin and cyclin B1 3'-UTRs, indicating it may be involved in the deadenylation of these mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号