首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Poly(A)+ (polyadenylated) mRNA coding for metallothioneins was purified 13-fold from rat liver polyribosomes and was identified by its ability to direct the biosynthesis of these proteins in a wheat-germ cell-free system. The carboxymethylated products of the protein-synthesizing system in vitro were analysed with sodium dodecyl sulphate/20% polyacrylamide-gel electrophoresis. The labelled compounds [3H]serine and [35S]cysteine were incorporated at high specific radioactivity into proteins that co-migrated with authentic metallothioneins. No [3H]leucine incorporation was found, in agreement with the amino acid composition of the metallothioneins. Metallothionein mRNA had a sedimentation coefficient of 9 S and carried a maximum of four ribosomes. At 5 h after a subcutaneous injection of ZnCl2 or CdCl2 (10 mumol/kg body wt.), the amount of this mRNA increased approx. 2- and 4-fold respectively, on the basis of translation in vitro. The increase in metallothionein mRNA (defined by translation in the wheat-germ system) was transient and, after CdCl2 treatment, fell back to control values by 17 h. Metallothioneins constituted a maximum of 0.8% of the total protein products synthesized in the wheat-germ system by total mRNA isolated from rat liver after CdCl2 treatment.  相似文献   

3.
Treatment of the myeloid cell lines, U-937 or HL-60, with 10 nM of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), for 24 h increased the rate of incorporation of [3H]glycerol into total chloroform extracts. A proportionally greater labeling of the non-polar lipid (NL) fraction compared to the polar, phospholipid (PL), fraction was observed. Chromatographic analysis showed a 6-fold increase in the labeling of triacylglycerols (TAG), a 2-fold increase in diacylglycerols, and no changes in monoacylglycerols. PL labeling showed a 3-fold increase in phosphatidylcholine (PC). The effect of TPA on TAG labeling was selectively observed in myeloid cell lines. No such a change was found in the lymphoid cell line. MOLT-3, which did respond to TPA with increased PC labeling. Incorporation of [3H]arachidonic acid (AA) into TAG by U-937 cells was selectively increased (2.5-fold) after treatment with TPA for 24 h. Treatment of U-937 cells with TPA in serum-free medium resulted in no increased labeling of TAG. These studies suggest that changes in TAG metabolism may be characteristic of myeloid differentiation and depend on the presence of serum factor(s).  相似文献   

4.
5.
Epidermal growth factor (EGF) stimulated the rapid accumulation of inositol trisphosphate in WB cells, a continuous line of rat hepatic epithelial cells. Since we previously had shown that EGF stimulates EGF receptor synthesis in these cells, we tested whether hormones that stimulate PtdIns(4,5)P2 hydrolysis would increase EGF receptor protein synthesis and mRNA levels. Epinephrine, angiotensin II, and [Arg8]vasopressin activate phospholipase C in WB cells as evidenced by the accumulation of the inositol phosphates, inositol monophosphate, inositol bisphosphate, and inositol trisphosphate. A 3-4-h treatment with each hormone also increased the rate of EGF receptor protein synthesis by 3-6-fold as assessed by immunoprecipitation of EGF receptor from [35S]methionine-labeled cells. Northern blot analyses of WB cell EGF receptor mRNA levels revealed that agents linked to the phosphoinositide signaling system increased receptor mRNA content within 1-2 h. A maximal increase of 3-7-fold was observed after a 3-h exposure to EGF and hormones. The phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), which activates protein kinase C also stimulated EGF receptor synthesis. Pretreatment of WB cells for 18 h with high concentrations of TPA "down-regulated" protein kinase C and blocked TPA-directed EGF receptor mRNA synthesis. In contrast, the effect of EGF on EGF receptor mRNA levels was not significantly decreased by TPA pretreatment. Epinephrine-induced increases in EGF receptor mRNA were reduced from 4- to 2-fold. Similarly, 18 h TPA pretreatment abolished the effect of TPA on EGF receptor protein synthesis but did not affect EGF-dependent EGF receptor protein synthesis. The 18-h TPA pretreatment diminished by 30-50% the induction of receptor protein synthesis by epinephrine or angiotensin II. We conclude that in WB cells EGF receptor synthesis can be regulated by EGF and other hormones that stimulate PtdIns(4,5)P2 hydrolysis. In these cells, EGF receptor synthesis appears to be regulated by several mechanism: one pathway is dependent upon EGF receptor activation and can operate independently of protein kinase C activation; another pathway is correlated with PtdIns(4,5)P2 hydrolysis and is dependent, at least in part, upon protein kinase C activation.  相似文献   

6.
Human hairy cell leukemia (HCL) cells in culture showed a marked increase in both [1-14C]acetate and [14C]choline incorporation into phosphatidylcholine (PC) when treated with a 10 nM concentration of 12-O-tetradecanoylphorbol 13-acetate (TPA) for 3 h. Dramatic morphological changes occurred and synthesis of most phospholipids was stimulated. However, the most dramatic increase was seen in the [14C]acetate labeling of both long- and short-chain fatty acid-containing sphingomyelins (from 200-425% of control levels), sphingomyelin being especially enriched in HCL cells. Negligible incorporation of [14C]choline into sphingomyelin was observed and phospholipase inhibitor (U10029A) studies indicated that PC was the major source of sphingomyelin choline. These changes were most clearly seen by autoradiography of two-dimensional thin-layer chromatography plates. Chronic myelogenous leukemia (CML) blasts, which did not respond morphologically to TPA, showed no increased phospholipid synthesis under the same conditions and increases in sphingomyelin synthesis were modest. Other non-TPA-responding leukemic cells were similarly refractive. However, one out of four acute monomyelocytic leukemic (AMMoL) cells studied responded morphologically in a manner identical to HCL cells and exhibited the same dramatic increase in sphingomyelin synthesis. Data are presented which suggest that TPA may also stimulate PC phospholipase C activity in addition to activating the calcium-dependent protein kinase by mimicking diacylglycerol.  相似文献   

7.
8.
The production and characterization of an antibody to rat liver CTP:phosphocholine cytidylyltransferase is described. This antibody quantitatively precipitated cytidylyltransferase from both rat liver and HeLa cell cytosol. Following affinity purification, the antibody was used to demonstrate, for the first time, the phosphorylation of cytidylyltransferase in vivo. Following the immunoprecipitation of cytidylyltransferase from HeLa cells, acid hydrolysis, and thin layer electrophoresis of the amino acids, only [32P]phosphoserine was detected. The phosphorylation state of cytidylyltransferase in HeLa cells was examined following treatment with phorbol ester for 1 h. In agreement with previous studies, the incorporation of [3H]choline into phosphatidylcholine via the CDP-choline pathway was stimulated 5-fold in cultures of HeLa cells following treatment with phorbol ester for 1 h. However, no appreciable translocation of cytidylyltransferase was detected, despite the utilization of two different methods of cell lysis. Furthermore, the inclusion of phosphatase inhibitors and chelators of divalent cations in the homogenization buffers had no effect on the observed distribution or activity of the enzyme. Immunoprecipitated cytidylyltransferase was phosphorylated to the same extent, and on serine residues only, in both control and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-treated cells. Measurement of the pool sizes of the aqueous intermediates of the CDP-choline pathway, following TPA treatment, revealed a modest decrease in the phosphocholine pool only, consistent with an activation of cytidylyltransferase.  相似文献   

9.
1. The induction of metallothionein (MT) protein by TPA (O-tetradecanoyl phorbol acetate), a protein kinase C activator, was demonstrated in vivo in rat liver and in vitro in rat hepatocytes in primary culture. In vivo half maximal induction at 25 hr was seen at 26 nmol TPA/kg body wt. Five- to seven-fold inductions were seen in vivo. De novo protein synthesis was required for this induction as demonstrated by cycloheximide inhibition of [35S]cysteine incorporation into MT protein. 2. TPA induction of MT protein in primary cultures of rat hepatocytes reached levels of 2.6-4.1-fold, as assessed by [35S]cysteine incorporation, 1.34-2.20-fold, as assessed by 109Cd binding in a metal displacement/HPLC assay, and 2.5-5-fold, as assessed by 109Cd binding in a metal displacement/Sephadex G-75 Superfine assay. 3. The induction of MT mRNA by TPA was demonstrated in vivo in rat liver and in vitro in 2 rat hepatoma cell lines, EC3 and 2M. MT mRNA was quantitated using dot blot and Northern gel assays. In vivo TPA induced hepatic MT mRNA 2.36-5.88-fold (dot blot) and 7.4-22-fold (Northern gels). In vitro TPA induced MT mRNA 1.71-15.26-fold in EC3 cells and 2.23-8.43-fold in 2M cells. MT mRNA was 0.54 kb, and alpha-tubulin mRNA was 1.62 kb in size on Northern gels. 4. TPA induction of MT protein and mRNA in vivo and in vitro is rapid and persistent and occurs at low concentrations. The 2 rat hepatoma cell lines provide a useful system in which to study MT induction in vitro without confounding secondary effects which can occur in vivo.  相似文献   

10.
11.
Meiotic maturation of Xenopus laevis oocytes by progesterone requires translation of stored maternal mRNAs. We investigated the role of poly(A) tail elongation of mRNAs during this process using cordycepin, which inhibits poly(A) tail elongation of mRNAs. When oocytes were treated with the buffer containing 10 mM cordycepin for 12 h, concentration of 3'-dATP in cytosol of oocytes increased to 0.7 mM, while that of ATP remained constant at around 1.2 mM. Incorporation of [32P]AMP into poly(A) mRNA was inhibited almost completely by this treatment. Progesterone-induced germinal vesicle breakdown (GVBD) was also abolished. Dose dependence of inhibition of progesterone-induced GVBD on cordycepin was similar to that of [32P]AMP incorporation into poly(A) mRNA. However, maturation-promoting factor-induced GVBD was unaffected by treatment of oocytes with cordycepin. Furthermore, the inhibition of GVBD by cordycepin was rescued by removal of cordycepin even in the presence of actinomycin D. Therefore, we concluded that poly(A) tail elongation of mRNA is required for induction of meiotic maturation of X. laevis oocytes. In addition, progesterone induced a 2.7-fold activation of [32P]AMP incorporation into the poly(A) tail of mRNA after a lag period of 3 h whereas GVBD was induced after 6-8 h from the progesterone treatment. Syntheses of most of the proteins were unaffected by treatment of oocytes with progesterone or cordycepin. However, syntheses of several proteins were increased or decreased by progesterone and cordycepin treatment.  相似文献   

12.
Epidermal 7-ethoxyresorufin O-deethylase (EROD) activity was elevated greater than 100-fold within 4 to 7 h of topical treatment of SENCAR mice with 100 nmol dibenz[a,c]anthracene (DB[a,c]A). Treatment of skin with 2 micrograms of 12-O-tetradecanoylphorbol-13-acetate (TPA) 2 to 8 h prior to DB[a,c]A application suppressed induction by 80%. Suppression was dose-dependent over the range of 0.01 to 5 micrograms TPA (ID50 approximately 0.6 nmol). EROD activities in normal and TPA-treated epidermis paralleled steady state P450 CYP1A1 mRNA content. Analogs of TPA incapable of activating or down-regulating protein kinase C (PKC) did not suppress induction. Pretreatment of skin with sn-1,2-didecanoylglycerol, an activator of PKC which causes translocation but no down-regulation, did not suppress EROD induction. However, induction was suppressed by chrysarobin, an anthralin analog that causes PKC down-regulation in the absence of prior activation. These studies suggest that PKC participates in the processes associated with Cyp1a-1 induction and that TPA effects Cyp1a-1 induction through its down-regulation of PKC.  相似文献   

13.
In most mammalian ovaries, the cumulus cell-oocyte complex (COC) expands at the time of ovulation by depositing an extensive extracellular matrix between the cumulus cells. This phenomenon can be reproduced in vitro by culturing COCs with follicle-stimulating hormone (FSH) and serum. Biosynthesis of hyaluronic acid (HA) and proteoglycans by mouse COCs in vitro was studied using [3H]glucosamine and [35S]sulfate as metabolic precursors. Radiolabeled complex carbohydrates were analyzed by ion exchange chromatography, specific enzyme digestion followed by high performance liquid chromatography, and gel filtration. The specific activities of [3H]hexosamines in the labeled molecules were determined by measuring the incorporation of 3H and 35S into chondroitin 4-sulfate disaccharides. When COCs were stimulated with FSH, HA biosynthesis increased 20-30-fold between 3-12 h later when expansion occurs, reaching a maximum rate of approximately 780 pmol (as glucosamine)/COC/h compared with the unstimulated rate of approximately 26 pmol/COC/h. The final concentration of HA in the expanded COC was calculated to be approximately 250 micrograms/ml. The effects of dibutyryl cyclic AMP (Bt2cAMP) on COC expansion and HA synthesis were similar to those of FSH, suggesting that the effects of FSH are mediated by cAMP. However, FSH significantly decreased the specific activity of the incorporated hexosamines while Bt2cAMP did not. Serum is necessary for the accumulation of HA in the COC matrix. HA synthesis in FSH-stimulated COCs was as high or higher in the absence of serum, but most was recovered in the medium and not in the COC matrix. The molecular size of the HA was greater than 2 million dalton in either case, suggesting that the serum did not alter physical properties of HA. Stimulation of proteoglycan biosynthesis by either FSH or Bt2cAMP was less pronounced (three to four times control) than for HA and was sustained throughout an 18-h culture period. A reduction of 80% in the deposition of newly synthesized PGs in the COC matrix by 0.5 mM beta-xyloside treatment did not affect the expansion of the cumulus.  相似文献   

14.
12-O-Tetradecanoylphorbol-13-acetate (TPA), a tumor promoter and potent activator of protein kinase C, stimulates [3H]choline incorporation into phosphatidylcholine (PtdCho) in NG108-15 cells (Liscovitch, M., Freese, A., Blusztajn, J. K. and Wurtman, R. J. (1986) J. Neurochem. 47, 1936-1941). In the present study we demonstrate that two cell-permeant diacylglycerols, sn-1-oleoyl-2-acetylglycerol and sn-1,2-dioctanoylglycerol, also stimulate [3H]choline incorporation into PtdCho. However, the effect of diacylglycerol is additional to that produced by a maximally effective concentration of TPA (0.5 microM), suggesting that the two agents may not act via the same mechanism. In addition, the protein kinase inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (at 200 microM) inhibits the action of TPA by 59% while not affecting that of diacylglycerol. Finally, preincubation of the cells with TPA (0.1 microM) for 24 h reduces protein kinase C activity in the cells and completely abolishes the effect of additional TPA on choline incorporation. In contrast, diacylglycerol-induced stimulation of PtdCho biosynthesis was not inhibited in the cells that were desensitized to TPA. These results suggest that the effect of the two cell-permeant diacylglycerols on PtdCho biosynthesis either is not mediated by protein kinase C activation, or, is mediated by a TPA-insensitive isoenzyme of protein kinase C.  相似文献   

15.
Previous studies demonstrated that phorbol esters and thyrotropin-releasing hormone (TRH) stimulated phosphatidylcholine synthesis via protein kinase C in GH3 pituitary cells (Kolesnick, R. N. (1987) J. Biol. Chem. 262, 14525-14530). Since phosphatidylcholine may serve as the precursor for sphingomyelin synthesis, studies were performed to assess the effect of protein kinase C on sphingomyelin synthesis. The potent phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), stimulated time- and concentration-dependent incorporation of 32Pi into the head group of sphingomyelin in cells short term labeled with 32Pi and resuspended in medium without radiolabel. TPA (10(-7) M) increased incorporation at a rate 1.4-fold of control after 2 h; EC50 congruent to 2 x 10(-9) M TPA. This correlated closely to TPA-induced phosphatidylcholine synthesis; EC50 congruent to 9 x 10(-10) M TPA. TRH (10(-7) M), which activates protein kinase C via a receptor-mediated mechanism, similarly stimulated 32Pi incorporation into sphingomyelin at a rate 1.5-fold of control; EC50 congruent to 5 x 10(-10) M TRH. This correlated closely with TRH-induced phosphatidylcholine and phosphatidylinositol synthesis; EC50 congruent to 2 x 10(-10) and 1.5 x 10(-10) M TRH, respectively. In cells short term labeled with [3H]palmitate, TRH induced a time- and concentration-dependent reduction in the level of [3H]ceramide and a quantitative increase in the level of [3H]sphingomyelin. Compositional analysis of the incorporated [3H]palmitate revealed that TRH increased radiolabel into both the sphingoid base and the fatty acid moieties of sphingomyelin. Similarly, TRH increased incorporation of [3H] serine into sphingomyelin to 145 +/- 8% of control after 3 h. TPA also stimulated these events. Like the effect of TRH on phosphatidylcholine synthesis, TRH-induced sphingomyelin synthesis was abolished in cells "down-modulated" for protein kinase C. In contrast, TRH-induced phosphatidylinositol synthesis still occurred in these cells. These studies suggest that protein kinase C stimulates coordinate synthesis of phosphatidylcholine and sphingomyelin. This is the first report of stimulation of sphingomyelin synthesis via a cell surface receptor.  相似文献   

16.
強皮肤促癌物十四烷酰佛波醋酸酯(TPA)局部应用时可触发一系列的生物化学改变,其中最明显的事件之一就是对ODC活性的短暂而急到的诱导,而这种诱导作用与其促癌作用密切相关。利用Northern印迹分析和条带(Slot)印迹分析证明,10nmol/L TPA一次局部处理小鼠背部皮肤可刺激ODC mRNA(2.0kb大小)表达,在4h左右最为明显,随后逐渐降低。10nmol/L TPA多次处理小鼠皮肤(每2天一次,共4次)也有类似的促进作用,但却在6h左右最为明显。在二甲基苯蒽和巴豆油诱发的二阶段小鼠皮肤乳头瘤和癌组织中也观察到了相同大小的ODC mRNA的高水平表达,尤以癌组织最高。新维甲类化合物R8605虽能明显抑制巴豆油诱导的ODC活性,但却未见对TPA诱导的ODC mRNA增加有明显抑制作用。  相似文献   

17.
In the present investigation, a hCG sensitive glycosyl-phosphatidylinositol (GPI) was isolated from cultured rat granulosa cells obtained from the ovaries of diethylstilbestrol (DES) implanted immature rats. The inositol-phosphoglycan (IPG) moiety of the GPI-lipid contains galactose, glucosamine, and myoinositol as demonstrated by metabolic labelling of granulosa cells for different time periods (5–96 h) with [3H]galactose, [3H]glucosamine, or [3H]myoinositol and treatment of the purified [3H]GPI with phosphatidylinositol-specific phospholipase C. Labelling equilibrium of the GPI-lipid was achieved after 24 h ([3H]galactose and [3H]myoinositol) or 72 h ([3H]glucosamine) incubation, whereas incorporation of other labelled carbohydrates tested ([3H]galactosamine, [3H]mannose, and [3H]sorbitol) was negligible throughout the time period studied. The glucosamine C-1 appears to be linked through a glycosidic bond to the myoinositol molecule of the IPG moiety as revealed by the generation of phosphatidylinositol (PtdIns) after nitrous acid deamination of dual labelled ([3H]glucosamine/[14C]palmitate or [3H]glucosamine/[14C]myristate) glycosyl-phosphatidylinositol. To investigate the fatty acid composition of the diacylglycerol (DAG) backbone of the GPI, granulosa cells were also labelled (5–72 hr) with [14C]linoleate, [3H]myristate, [3H]-oleate, [3H]palmitate, or [3H]stearate and the radioactivity associated with the purified glycosyl-phosphatidylinositol determined. Incorporation of [3H]palmitate and [3H]myristate into the GPI-lipid peaked after 8 h and 24 h of labelling, respectively, and both fatty acids were partially released after PLA2 treatment of the dual labelled ([3H]glucosamine/[14C]palmitate or [3H]glucosamine/[14C]myristate) GPI. In parallel experiments no significant incorporation of labelled stearate, oleate, or linoleic acid into the DAG backbone of the glycosylphosphatidylinositol could be detected. Granulosa cells were also labelled with [3H]glucosamine in the presence of FSH (30 ng/ml), cholera toxin (1 μg/ml), or the membrane permeable cAMP analog (but)2 cAMP (1 mM). Time related increases in GPI-labelling were apparent after 48 h and reached a maximum level (3-, 5-, and 7-fold for FSH, CT, and (but)2 cAMP, respectively) after 72 h in culture. In another set of experiments, granulosa cells were labelled for 72 h with [3H]glucosamine in the presence of (but)2cAMP (1 mM), TPA (10?7 M), or combination thereof. The effect of treatment with the membrane permeable cAMP analog on GPI labelling was prevented in the presence of TPA, whereas no differences in [3H]GPI content could be observed in untreated granulosa cells or cells cultured in the presence of the protein kinase C-activating phorbol ester alone. In cells differentiated with FSH (30 ng/ml for 3 days) to induce LH receptors, treatment with hCG (100 ng/ml) induced a rapid (60 sec) and transient (5 min) decrease in the GPI content, whereas no efect of the hormone on undifferentiated granulosa cells could be observed. The rapid effect elicited by hCG on GPI content and turnover may be an early transduction mechanism involved in the biological effects of LH/hCG in differentiated granulosa cells. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Alteration in mitochondrial fusion may regulate mitochondrial metabolism. Since the phospholipid cardiolipin (CL) is required for function of the mitochondrial respiratory chain, we examined the dynamics of CL synthesis in growing Hela cells immediately after and 12 h post-fusion. Cells were transiently transfected with Mfn-2, to promote fusion, or Mfn-2 expressing an inactive GTPase for 24 h and de novo CL biosynthesis was examined immediately after or 12 h post-fusion. Western blot analysis confirmed elevated Mfn-2 expression and electron microscopic analysis revealed that Hela cell mitochondrial structure was normal immediately after and 12 h post-fusion. Cells expressing Mfn-2 exhibited reduced CL de novo biosynthesis from [1,3-3H]glycerol immediately after fusion and this was due to a decrease in phosphatidylglycerol phosphate synthase (PGPS) activity and its mRNA expression. In contrast, 12 h post-mitochondrial fusion cells expressing Mfn-2 exhibited increased CL de novo biosynthesis from [1,3-3H]glycerol and this was due to an increase in PGPS activity and its mRNA expression. Cells expressing Mfn-2 with an inactive GTPase activity did not exhibit alterations in CL de novo biosynthesis immediately after or 12 h post-fusion. The Mfn-2 mediated alterations in CL de novo biosynthesis were not accompanied by alterations in CL or monolysoCL mass. [1-14C]Oleate incorporation into CL was elevated at 12 h post-fusion indicating increased CL resynthesis. The reason for the increased CL resynthesis was an increased mRNA expression of tafazzin, a mitochondrial CL resynthesis enzyme. Ceramide-induced expression of PGPS in Hela cells or in CHO cells did not alter expression of Mfn-2 indicating that Mfn-2 expression is independent of altered CL synthesis mediated by elevated PGPS. In addition, Mfn-2 expression was not altered in Hela cells expressing phospholipid scramblase-3 or a disrupted scramblase indicating that proper CL localization within mitochondria is not essential for Mfn-2 expression. The results suggest that immediately post-mitochondrial fusion CL de novo biosynthesis is “slowed down” and then 12 h post-fusion it is “upregulated”. The implications of this are discussed.  相似文献   

19.
20.
Proacrosin is the zymogen precursor of acrosin, a sperm protease believed to play an essential role in fertilization. In this study, we used primary cultures of guinea pig spermatogenic cells to examine the temporal appearance and mechanisms of synthesis and processing of proacrosin during acrosome development. Following [35S]methionine incorporation and immunoprecipitation, cultured spermatogenic cells were found to synthesize two forms of proacrosin (Mr 54,000 and 57,000). Proacrosin was synthesized mainly by round spermatids. By immunoblotting, proacrosin became very prominent in round spermatids and persisted throughout spermiogenesis. Pulse-chase experiments demonstrated that the Mr 54,000 form of proacrosin was converted to the Mr 57,000 form, presumably reflecting posttranslational processing of carbohydrate side chains. When spermatogenic cells were cultured in the presence of tunicamycin, the synthesized proacrosin had an Mr of 54,000. However, in vitro translation of mRNA extracted from guinea pig testis followed by immunoprecipitation indicated that the core polypeptide of proacrosin has an Mr of 44,000. Guinea pig spermatogenic cells incorporated glucosamine and fucose into the oligosaccharides of proacrosin. Treatment of guinea pig testis proacrosin with N-glycosidase or O-glycosidase reduced the Mr by 3-7%. These results indicate that proacrosin is synthesized by postmeiotic cells and the enzyme contains N- and O-linked oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号