首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
AMP-activated protein kinase (AMPK) is an important regulator of cellular energy status. In adipocytes, stimuli that increase intracellular cyclic AMP (cAMP) have also been shown to increase the activity of AMPK. The precise molecular mechanisms responsible for cAMP-induced AMPK activation are not clear. Phosphodiesterase 3B (PDE3B) is a critical regulator of cAMP signaling in adipocytes. Here we investigated the roles of PDE3B, PDE4, protein kinase B (PKB) and the exchange protein activated by cAMP 1 (Epac1), as well as lipolysis, in the regulation of AMPK in primary rat adipocytes. We demonstrate that the increase in phosphorylation of AMPK at T172 induced by the adrenergic agonist isoproterenol can be diminished by co-incubation with insulin. The diminishing effect of insulin on AMPK activation was reversed upon treatment with the PDE3B specific inhibitor OPC3911 but not with the PDE4 inhibitor Rolipram. Adenovirus-mediated overexpression of PDE3B and constitutively active PKB both resulted in greatly reduced isoproterenol-induced phosphorylation of AMPK at T172. Co-incubation of adipocytes with isoproterenol and the PKA inhibitor H89 resulted in a total ablation of lipolysis and a reduction in AMPK phosphorylation/activation. Stimulation of adipocytes with the Epac1 agonist 8-pCPT-2′O-Me-cAMP led to increased phosphorylation of AMPK at T172. The general lipase inhibitor Orlistat decreased isoproterenol-induced phosphorylation of AMPK at T172. This decrease corresponded to a reduction of lipolysis from adipocytes. Taken together, these data suggest that PDE3B and PDE4 regulate cAMP pools that affect the activation/phosphorylation state of AMPK and that the effects of cyclic AMP on AMPK involve Epac1, PKA and lipolysis.  相似文献   

2.
Adenosine protects the myocardium of the heart by exerting an antiadrenergic action via the adenosine A1 receptor (A1R). Because beta 1-adrenergic receptor (beta 1R) stimulation elicits myocardial protein phosphorylation, the present study investigated whether protein kinase A (PKA) catalyzed rat heart ventricular membrane phosphorylation affects the beta 1R adrenergic and A1R adenosinergic actions on adenylyl cyclase activity. Membranes were either phosphorylated with PKA in the absence/presence of a protein kinase inhibitor (PKI) or dephosphorylated with alkaline phosphatase (AP) and assayed for adenylyl cyclase activity (AC) in the presence of the beta 1R agonist isoproterenol (ISO) and/or the A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA). 32P incorporation into the protein substrates of 140-120, 43, and 29 kDa with PKA increased both the ISO-elicited activation of AC by 51-54% and the A1R-mediated reduction of the ISO-induced increase in AC by 29-50%, thereby yielding a total antiadrenergic effect of approximately 78%. These effects of PKA were prevented by PKI. AP reduced the ISO-induced increase in AC and eliminated the antiadrenergic effect of CCPA. Immunoprecipitation of the solubilized membrane adenylyl cyclase with the use of a polyclonal adenylyl cyclase VI antibody indicated that the enzyme is phosphorylated by PKA. These results indicate that the cardioprotective effect of adenosine afforded by its antiadrenergic action is facilitated by cardiac membrane phosphorylation.  相似文献   

3.
Presomite stage rat embryos were cultured for 45-49 hr with medium containing various adrenergic agonists and antagonists. L-Norepinephrine but not D-norepinephrine (several orders of magnitude less potent than the L-isomer at alpha-1 adrenergic receptors) resulted in a dose-dependent increase of situs inversus similar to that found for phenylephrine, an alpha-1 adrenergic agonist. Prazosin, an alpha-1 adrenergic antagonist, inhibited phenylephrine-induced situs inversus in a dose-dependent manner. Neither dexmedetomidine, an alpha-2 adrenergic agonist, nor isoproterenol, a beta adrenergic agonist, caused situs inversus. These results provide pharmacological evidence that stimulation of alpha-1 but not of alpha-2 and beta adrenergic receptors modulates the control of left/right sidedness in rat embryos.  相似文献   

4.
The enzyme ATP citrate-lyase of the fatty acid synthesis pathway is phosphorylated in vitro and in isolated cells. However, no effect of phosphorylation on the enzyme activity has been detected. It is demonstrated that the beta-adrenergic agonist isoproterenol or insulin both promote an immobilization of ATP citrate-lyase, detected in digitonin-permeabilized adipocytes. This effect was reproduced by the cyclic AMP analog cyclic 8-bromo-AMP. The beta-adrenergic antagonist propranolol blocked, but failed to reverse, the isoproterenol-directed effect. Propranolol also failed to reverse the isoproterenol-induced increased phosphorylation of ATP citrate-lyase specifically. In response to increasing concentrations of isoproterenol, an increased extent of phosphorylation of ATP citrate-lyase was paralleled by an increased immobilization of the enzyme. It is suggested that the state of phosphorylation of ATP citrate-lyase in adipocytes controls the localization in the cell.  相似文献   

5.
Cyclic AMP phosphodiesterase in rat adipocytes is stimulated by insulin and also by agents that increase cyclic AMP levels. When the enzyme is immunoprecipitated from a solubilised microsomal preparation from adipocytes prelabelled with radioactive phosphate and separated on SDS polyacrylamide gels, label is found in a protein band at the expected Mr for adipose tissue phosphodiesterase. Treatment of the adipocytes with isoproterenol or methyl isobutylxanthine increased the labelling of this band. Insulin alone had no effect on its labelling but did decrease the incorporation of label caused by isoproterenol.  相似文献   

6.
Pretreatment of rat cardiac myocytes with the beta-adrenergic agonist, db-cAMP or forskolin decreased ADP-ribosylation of 40-41 kDa protein by islet-activating protein (IAP) in cell membranes. Addition of activated cyclic AMP-dependent protein kinase (protein kinase A) catalytic subunit and MgCl2 also decreased ADP-ribosylation of 40-41 kDa protein by IAP in cell membranes. The alpha- and beta-subunits of partially purified inhibitory GTP-binding protein (Gi) were both phosphorylated by protein kinase A. The amounts of phosphate incorporated into the subunits of Gi were 0.34 and 0.18 mol/mol protein. These show that phosphorylation of Gi by protein kinase A results in a decrease in its ADP-ribosylation by IAP.  相似文献   

7.
This study sought to evaluate alpha-2 and beta adrenergic modulation of cAMP production in the DDT1 MF-2 transformed smooth muscle myocyte. After stimulation with forskolin or adrenergic agonists with or without subtype specific antagonists, cAMP production was determined. These experiments confirmed an increase of cAMP in response to forskolin, isoproterenol, epinephrine, and norepinephrine; the adrenergic stimulation was inhibited by propranolol. On the other hand, the alpha-2 agonist clonidine did not inhibit cAMP production. Likewise, alpha-2 receptor blockade did not increase cAMP production in response to epinephrine. These studies, therefore, suggest that the DDT1 MF-2 myocyte does not contain a significant population of functional alpha-2 adrenergic receptors.  相似文献   

8.
The effects of the mixed agonist epinephrine and the beta agonist isoproterenol, each alone and in combination with the alpha adrenergic blocker phentolamine and the beta blocker propranolol on the adenylate cyclase activity of human adipocyte membrane fragments were determined in a calcium free buffer. Neither phentolamine (10 muM) nor propranolol (32 muM) affected basal adenylate cyclase activity. Epinephrine (10 muM) stimulated adenylate cyclase activity and this effect was slightly enhanced by phentolamine. The combination of epinephrine plus propranolol depressed adenylate cyclase below the basal level. Isoproterenol (10 muM) markedly stimulated adenylate cyclase; the addition of phentolamine caused an equivocal further increase while the addition of propranolol depressed adenylate cyclase activity to, but not below, the basal level. These findings are consistent with the hypothesis that human adipocytes have both alpha and beta adrenergic receptors and that these receptors are associated with the cell membrane adenylate cyclase system.  相似文献   

9.
Nutritional deprivation of proteins decreases the protein kinase C (PKC) activity in rat lung. The activity of (PKC) is influenced by lipid metabolism. Changes in PKC activity may influence phosphorylation of its substrate proteins in the tissues. Therefore, alterations in phospholipid metabolism and PKC mediated protein phosphorylation in dietary protein deficiency in rat lung were envisaged. The study was conducted on rats fed on three different types of diet viz., casein (20% protein), deficient (4% protein, rice flour as source of protein) and supplemented (deficient diet supplemented with L-lysine and DL-threoning). Feeding of protein deficient diet caused reduction in incorporation of [3H] myo-inositol in the total phosphoinositides in lungs and an increase in total inositol phosphate pool. There was a significant reduction in the contents and turnover rate of phosphatidyl inositol and phosphatidyl inositol monophosphate. Supplementation of diet with L-lysine and DL-threonine had a reversing effect on total pool of phosphoinositides and, the metabolism of phosphatidyl inositol bisphosphate and phosphatidyl inositol. In phosphatidyl choline metabolism, the dietary protein deficiency led to a decrease in incorporation of [14C-methyl] choline-chloride in total phospholipids. In contrast, its incorporation increased in phosphatidyl choline pool. The contents of phosphatidyl choline and residue, incorporation of [14C-methyl] choline-chloride in them and their turnover rate also increased. Supplementation of diet had a reversal effect on most of these parameters. Phosphorylation of proteins of 84, 47, 35 and 16 kDa was identified to be mediated by PKC. In dietary protein deficiency, phosphorylation of all these proteins, except that of 47 kDa, increased. Supplementation of diet reversed the pattern except that of 84 kDa. The findings suggest that changes in phospholipid metabolism in dietary protein deficiency may effect the activity of PKC thereby influencing the phosphorylation of its substrate proteins and hence associated functions that may lead to pathophysiology of lung.  相似文献   

10.
Catecholamines are important in the modulation of smooth muscle contractile activity; this study was undertaken to evaluate adrenoceptor stimulation of intracellular inositol-phosphate production in a genital tract smooth muscle myocyte. DDT1 MF-2 smooth muscle myocytes, derived from a hamster ductus deferens leiomyosarcoma, were loaded with 3H-inositol, incubated in 10 mM LiCl, then stimulated with adrenergic agonists with and without antagonists. Subsequently, the inositol phosphates were isolated by anion-exchange chromatography. In the presence of norepinephrine (NE), inositol trisphosphate (IP3) was produced by 30 s and peaked at 2 min; inositol 1-phosphate was also apparent by 30 s, and continued to increase over 15 min. Clonidine (an alpha-2 agonist), isoproterenol, and NE in the presence of phentolamine or prazosin (an alpha-1 antagonist) failed to increase IP3. In contrast, NE in the presence of yohimbine (an alpha-2 antagonist) or propranolol stimulated IP3 production to levels comparable to that stimulated by NE alone. These studies provide evidence that inositol phosphate production is involved in alpha-1 adrenergic signal transduction in DDT1 MF-2 myocyte.  相似文献   

11.
The effect of selective alpha adrenergic agonists and antagonists on osmotic water permeability (Posm) across isolated skins of Bufo arenarum toads was investigated. Clonidine, an alpha-2 agonist, inhibited basal Posm and oxytocin, isoproterenol and theophylline stimulated Posm, but did not alter the hydrosmotic effect of exogenous cAMP. Blockade of the effect of clonidine on basal and stimulated Posm by the selective alpha-2 antagonist yohimbine supports the hypothesis that the inhibitory effect is mediated by the stimulation of alpha-2 adrenergic receptors.  相似文献   

12.
AMP-activated protein kinase (AMPK) is a phylogenetically conserved intracellular energy sensor that has been implicated as a major regulator of glucose and lipid metabolism in mammals. However, its possible role in mediating or influencing the adrenergic control of lipolysis in adipocytes remains uncertain. In this study, we utilized the murine cultured preadipocyte line 3T3-L1 to examine this question. Treatment of adipocytes with isoproterenol or forskolin promoted the phosphorylation of AMPK at a critical activating Thr-172 residue in a dose- and time-dependent manner. This correlated well with a stimulation of the activity of AMPK, as measured in the immune complex. Analogs of cAMP mimicked the effect of isoproterenol and forskolin on AMPK phosphorylation. Treatment of adipocytes with insulin reduced both basal and forskolin-induced AMPK phosphorylation via a pathway dependent on phosphatidylinositol 3'-kinase. Overexpression of a dominant-inhibitory mutant of AMPK blocked isoproterenol-induced lipolysis by approximately 50%. These data indicate that there exists a novel pathway by which cAMP can lead to the activation of AMPK, and in adipocytes, this is required for maximal activation of lipolysis.  相似文献   

13.
Tyrosine phosphorylation in human neutrophil   总被引:9,自引:0,他引:9  
Protein tyrosine phosphorylation in human neutrophils was examined by immunoblotting with antibodies specific for phosphotyrosine. The addition of the human hormone granulocyte-macrophage colony stimulating factor to human neutrophils caused an increase in the tyrosine phosphorylation levels of several proteins. The increases in at least two of these proteins having molecular masses of 40 kDa (p40) and 54 kDa (p54) were rapid and were inhibited in pertussis toxin treated cells. The newly synthesized tyrosine kinase inhibitor ST 638 inhibited the increases in the levels of the tyrosine phosphorylation in p92, p78, p54 and p40 proteins. The epidermal growth factor receptor tyrosine kinase inhibitors were less effective. The addition of the chemotactic factor fMet-Leu-Phe to human neutrophils also caused an increase in tyrosine phosphorylation in some of these proteins. The pattern of the fMet-Leu-Phe-induced tyrosine phosphorylation was different from that produced by GM-CSF. The increases were also inhibited by ST 638. In addition, ST 638 inhibited superoxide production but not actin polymerization in control and GM-CSF-treated cells stimulated with fMet-Leu-Phe. Moreover, the active but not inactive phorbol esters increase the tyrosine phosphorylation only in the 40 kDa protein. These results suggest several points: (a) some of the responses produced by GM-CSF and fMet-Leu-Phe are mediated through tyrosine phosphorylation, (b) the GM-CSF receptor is coupled to a pertussis toxin sensitive G-protein, (c) the 40 kDa protein is probably the Gi alpha 2, and (d) the 78 or the 92 kDa protein is most likely the receptor for GM-CSF, which indicates that the receptor may have a tyrosine kinase domain.  相似文献   

14.
The possible presence of α adrenergic control of lipolysis and cyclic AMP production in brown adipocytes of hamsters was studied in adipocytes isolated from interscapular, subscapular, cervical and axillary regions of normal male hamsters maintained at 25°C. Lipolysis activated by either 3-isobutyl-1-methyl xanthine or isoproterenol was unaffected by the presence of the α adrenergic selective agonists clonidine and methoxamine. Similarly, accumulation of cyclic AMP in response to β-receptor stimulation, alone or in combination with a methyl xanthine, was unaffected by clonidine or methoxamine. In contrast, both lipolysis and cyclic AMP accumulation in brown fat cells were effectively suppressed in the presence of nicotinic acid, prostaglandin E1 or N6-phenylisopropyl adenosine. Accumulation of cyclic AMP in response to the mixed agonist norepinephrine was not influenced when cells were exposed to the alpha adrenergic blocking drugs yohimbine or tolazoline. These observations suggest that alpha-2 adrenergic receptors which are present on hamster white fat cells and control production of cyclic AMP and lipolysis are absent from hamster brown adipocytes. On the other hand, brown fat cells of this species appear to respond to a number of other inhibitory compounds in a manner not markedly different from that of white adipocytes.  相似文献   

15.
1. In isolated rat adipocytes, acetyl-CoA carboxylase is inactivated by treatment of the cells with adrenaline or the beta-agonist isoproterenol, but not by the alpha-agonist phenylephrine. The inactivation is stable during purification in the presence of protein phosphatase inhibitors, and is associated with a 30-40% increase in the labelling of enzyme isolated from 32P-labelled cells. 2. Increased phosphorylation occurs within peptide T1, which was identified by sequencing to be the peptide Ser-Ser77-Met-Ser79-Gly-Leu-His-Leu-Val-Lys, containing Ser-77 (phosphorylated by cyclic-AMP-dependent protein kinase) and Ser-79 (phosphorylated by the AMP-activated protein kinase). Analysis of the release of radioactivity as free phosphate during Edman degradation of peptide T1 revealed that all of the phosphate was in Ser-79 in both basal and hormone- or agonist-stimulated cells. Treatment of adipocytes with various agents which activate cyclic-AMP-dependent protein kinase by receptor-independent mechanisms (forskolin, cyclic AMP analogues, isobutylmethylxanthine) also produced inactivation of acetyl-CoA carboxylase and increased phosphorylation at Ser-79. 3. The (Rp)-[thio]phosphate analogue of cyclic AMP, which is an antagonist of binding of cyclic AMP to the regulatory subunit of cyclic-AMP-dependent protein kinase, opposes the effect of adrenaline on phosphorylation and inactivation of acetyl-CoA carboxylase. Together with the effects of isobutylmethylxanthine and the stimulatory cyclic AMP analogues, this strongly indicates that cyclic-AMP-dependent protein kinase is an essential component of the signal transduction pathway, although clearly it does not directly phosphorylate acetyl-CoA carboxylase. 4. As shown by okadaic acid inhibition, greater than 95% of the acetyl-CoA carboxylase phosphatase activity in extracts of rat adipocytes or liver is accounted for by protein phosphatase-2A, with less than 5% attributable to protein phosphatase-1. Inhibition of protein phosphatase-1 via phosphorylation of inhibitor-1 is therefore unlikely to be the mechanism by which cyclic-AMP-dependent protein kinase indirectly increases phosphorylation of acetyl-CoA carboxylase. Various other potential mechanisms are discussed.  相似文献   

16.
Components of a protein tyrosine phosphorylation/dephosphorylation network were identified in the cyanobacterium Anabaena sp. strain PCC 7120. Three phosphotyrosine (P-Tyr) proteins of 27, 36, and 52 kDa were identified through their conspicuous immunoreactions with RC20H monoclonal antibodies specific for P-Tyr. These immunoreactions were outcompeted completely by free P-Tyr (5 mM) but not by phosphoserine or phosphothreonine. The P-Tyr content of the three major P-Tyr proteins and several minor proteins increased with their time of incubation in the presence of Mg-ATP and the protein phosphatase inhibitors sodium orthovanadate and sodium fluoride. Incubation of the same extracts with [gamma-32P]ATP but not [alpha-32P]ATP led to the phosphorylation of five polypeptides with molecular masses of 20, 27, 52, 85, and 100 kDa. Human placental protein tyrosine phosphatase 1B, with absolute specificity for P-Tyr, liberated significant quantities of 32Pi from four of the polypeptides, confirming that a portion of the protein-bound phosphate was present as 32P-Tyr. Alkaline phosphatase and the dual-specificity protein phosphatase IphP from the cyanobacterium Nostoc commune UTEX 584 also dephosphorylated these proteins and did so with greater apparent efficiency. Two of the polypeptides were partially purified, and phosphoamino analysis identified 32P-Tyr, [32P]phosphoserine, and [32P]phosphothreonine. Anabaena sp. strain PCC 7120 cell extracts contained a protein tyrosine phosphatase activity that was abolished in the presence of sodium orthovanadate and inhibited significantly by the sulfhydryl-modifying agents p-hydroxymercuriphenylsulfonic acid and p-hydroxymercuribenzoate as well as by heparin. In Anabaena sp. strain PCC 7120 the presence and/or phosphorylation status of P-Tyr proteins was influenced by incident photon flux density.  相似文献   

17.
Male Wistar rats, 6-8 week old, were fasted for 72 hours. The in vitro lipolytic activity of epididymal adipocytes was measured in the presence of adrenalin (a alpha and beta adrenergic agonist), isoprenaline (a pure beta agonist), theophylline (a phosphodiesterase inhibitor) or UK 14304 (a alpha 2 adrenoceptor agonist) associated with adenosine deaminase. The basal lipolytic activity, expressed per 100 mg lipids, was higher in fasted adipocytes than in fed ones. Its stimulation by adrenalin or isoproterenol was decreased by fast. The effects of these drugs were more potentiated by theophylline in fasted adipocytes than in fed ones. The UK 14304 inhibition of adenosine deaminase-stimulated lipolysis was about 20% in fasted adipocytes and 50% in fed adipocytes. The in vitro resistance of fasted adipocytes to the lipolytic effect of adrenalin or isoproterenol may be related to the hypothyroid status of fasted rats.  相似文献   

18.
Skeletal muscle dihydropyridine-sensitive calcium channels are in vitro substrates for cAMP-dependent protein kinase. In the present work, alpha 1 subunits were isolated from cultured skeletal muscle cells by immunoprecipitation with a specific monoclonal antibody under conditions where proteolysis and dephosphorylation were prevented. Two forms of alpha 1 subunit, 200 and 160 kDa, were identified by back phosphorylation in vitro with cAMP-dependent protein kinase, specific immunoprecipitation, and phosphopeptide mapping. Treatment of cells with forskolin, isoproterenol, calcitonin gene-related peptide, or 8-bromo-cAMP to increase intracellular cAMP reduced 32P incorporation into all phosphopeptides in vitro by 60-80% indicating that increases in cAMP caused endogenous phosphorylation of all sites on both alpha 1(200) and alpha 1(160) to nearly maximal levels. The extents of basal and stimulated phosphorylation in vivo were estimated by back phosphorylation methods to be 35-40% and 83-86%, respectively. In muscle cells metabolically labeled with 32P, 3 mol of phosphate were incorporated into alpha 1 subunits. Forskolin stimulated 32P incorporation into alpha 1 subunits 1.6-fold. Taken together, our results show that skeletal muscle cells contain two forms of the alpha 1 subunit which both are basally phosphorylated on cAMP-dependent phosphorylation sites and are further phosphorylated in response to agents that increase intracellular cAMP.  相似文献   

19.
We have examined the effects of cAMP elevating agents on the phosphorylation of dihydropyridine-sensitive Ca2+ channels in intact newborn chick skeletal muscle. In situ treatment with the beta-adrenergic receptor agonist isoproterenol resulted in the phosphorylation of the 170-kDa alpha 1 subunit in the intact cells, as evidenced by a marked decrease in the ability of the alpha 1 peptide to serve as a substrate in in vitro back phosphorylation reactions with [gamma-32P]ATP and the purified catalytic subunit of cAMP-dependent protein kinase. The phosphorylation of the 52-kDa beta subunit was not affected. The effects of isoproterenol were time- and concentration-dependent and were mimicked by other cAMP elevating agents but not by the Ca2+ ionophore A23187 or a protein kinase C activator. To test for functional effects of the observed phosphorylation, purified channels were reconstituted into liposomes containing entrapped fluo-3, and depolarization-sensitive and dihydropyridine-sensitive Ca2+ influx was measured. Channels from isoproterenol-treated muscle exhibited an increased rate and extent of Ca2+ influx compared to control preparations. The effects of isoproterenol pretreatment could be mimicked by phosphorylating the channels with cAMP-dependent protein kinase in vitro. These results demonstrate that the alpha 1 subunit of the dihydropyridine-sensitive Ca2(+)-channels is the primary target of cAMP-dependent phosphorylation in intact muscle and that the phosphorylation of this protein leads to activation of channel activity.  相似文献   

20.
Previous studies have demonstrated enhanced phosphorylation of phospholipase C-tau (PLC-tau), a key regulatory enzyme in phosphoinositide metabolism, in cells treated with platelet-derived growth factor (PDGF) and epidermal growth factor, both of which act via specific receptor tyrosine kinases. Our studies on BALB/c-3T3 cells show that agents that promote cellular cyclic AMP accumulation also increase the phosphorylation, specifically the serine phosphorylation, of this enzyme. Increased phosphorylation of PLC-t (2-3-fold) was evident within 5-10 min of addition of isobutylmethylxanthine (IBMX) and either cholera toxin or forskolin to cells, and persisted for at least 3 h. Treatment of cells with cyclic AMP agonists also enhanced, with similar kinetics, the phosphorylation of a 76 kDa protein co-precipitated by anti-PLC-tau monoclonal antibodies. Brief exposure of cells to cholera toxin/IBMX or forskolin/IBMX decreased inositol phosphate formation induced by the GTP-binding protein (G-protein) activator aluminium fluoride by approx. 50%, but was without effect on PDGF-stimulated inositol phosphate formation. These findings suggest that PLC-tau, and perhaps the 76 kDa co-precipitated protein, are substrates of cyclic AMP-dependent protein kinase in BALB/c-3T3 cells: however, the lack of effect of cyclic AMP elevation on PDGF-stimulated inositol phosphate formation indicates that the intrinsic activity of PLC-tau is unaltered by cyclic AMP-mediated phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号