首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Fgf-4, initially isolated as a transforming gene from human tumors, is a member of the Fibroblast Growth Factor (FGF) family. It has previously been shown by northern blot hybridization analysis to be expressed in teratocarcinoma and embryonic stem cells, suggesting that it plays a role in embryonic development. We have carried out an RNA in situ hybridization analysis of Fgf-4 expression in the developing mouse embryo, from fertilization through the 14th day of gestation (E14.5). Our results show that Fgf-4 RNA is first detected at the late blastocyst stage in cells that give rise to all of the embryonic lineages (inner cell mass cells). During the early stages of gastrulation, expression becomes restricted to the primitive streak where mesoderm and definitive endoderm are formed. Expression continues in the distal (rostral) two-thirds of the streak through approx. E10, and then is detected in the tail bud, which replaces the streak as the primary source of mesoderm. Additional sites of expression are found after the three primary germ layers are established and organogenesis begins. Fgf-4 RNA is detected transiently in the branchial arch units, the somitic myotome, the apical ectodermal ridge of the developing limb bud and the tooth bud, suggesting that the gene has multiple roles during embryogenesis. These results are compared with the expression patterns of other FGF genes. Taken together, the data suggest that individual members of the gene family are expressed sequentially in developmental pathways such as mesoderm formation and myogenesis, and play a role in specific epithelial-mesenchymal interactions.  相似文献   

3.
4.
Two distinct sources for a population of maturing axial progenitors   总被引:2,自引:0,他引:2  
In mammals, the primitive streak region and its descendant, the tail bud, are the source of nascent mesoderm and spinal cord throughout axial elongation. A localised population of long-term axial progenitors has been identified in a region of the tail bud, the chordoneural hinge, but the localisation of such progenitors at earlier stages is so far untested. By studying gene expression, we have shown that a specific topological arrangement of domains persists from the streak to the tail bud, and includes an area (the node-streak border) in which ectoderm that expresses primitive streak markers overlies the prospective notochord. This arrangement persists in the chordoneural hinge. Homotopic grafts show that, as in other vertebrates, cells in the streak and node predominantly produce mesoderm, whereas those in the node-streak border and lateral to the streak additionally produce neurectoderm. Node-streak border descendants populate not only neurectoderm, somites and notochord throughout the axis, but also the chordoneural hinge. Ectoderm lateral to the embryonic day (E)8.5 streak is later recruited to the midline, where it produces somites and chordoneural hinge cells, the position of which overlaps that of border-derived cells. Therefore, the E8.5 axial progenitors that will make the tail comprise cells from two distinct sources: the border and lateral ectoderm. Furthermore, heterotopic grafts of cells from outside the border to this region also populate the chordoneural hinge. Expression of several streak- and tail bud-specific genes declines well before elongation ends, even though this late population can be successfully transplanted into earlier embryos. Therefore, at least some aspects of progenitor status are conferred by the environment and are not an intrinsic property of the cells.  相似文献   

5.
《Developmental biology》1997,192(1):45-58
A characteristic abnormality of chimeras composed of wildtype andT/T(Brachyury) mutant embryonic stem cells is the aggregation and accumulation of mutant cells in the primitive streak and its descendant, the tail bud (V. Wilson, L. Manson, W. C. Skarnes, and R. S. P. Beddington (1995).Development121, 877–886). To demonstrate that this aberrant behaviour of mutant cells in the streak is due only to the absence of wild-type T protein and to investigate dosage effects of T function on cell deployment during gastrulation, a vector expressingTunder the control of its own promoter (which results inTexpression in the primitive streak but not in the notochord) was introduced intoT/Tmutant ES cells carrying a ubiquitouslacZlineage marker. Four clones (TR clones) that express T appropriately in the streak and rescue abnormal chimeric morphology were recovered. In chimeras, these four clones fall into two distinct categories with respect to their ability to exit from the primitive streak and their subsequent tissue colonisation profile. TR1 and TR4 descendants no longer accumulated in the tail bud and gave rise to all types of mesoderm as well as colonising ventral neurectoderm. Interestingly, TR2 and TR5 cells (which express higher levels of T protein than TR1 and TR4in vitro) tended to exit the streak prematurely, showed a marked reduction in posterior mesoderm colonisation, and were virtually excluded from ventral neurectoderm. However, while descendants of all four TR clones can colonise dermomyotome at all axial levels, the parentT/Tmutant cells only contribute to this tissue rostral to the forelimb bud and are completely excluded from more caudal dermomyotome. These results show that the abnormal aggregation of mutant cells homozygous for theBrachyurydeletion (∼200 kb) can be ascribed solely to the lack of wild-type T protein, as can the failure ofT/Tcells to colonise caudal dermomyotome. They also suggest that patterns of cell recruitment from the streak can be influenced by the level of T expression.  相似文献   

6.
7.
We established the mutant mouse line, B6;CB-SktGtAyu8021IMEG (SktGt), through gene-trap mutagenesis in embryonic stem cells. The novel gene identified, called Sickle tail (Skt), is composed of 19 exons and encodes a protein of 1352 amino acids. Expression of a reporter gene was detected in the notochord during embryogenesis and in the nucleus pulposus of mice. Compression of some of the nuclei pulposi in the intervertebral discs (IVDs) appeared at embryonic day (E) 17.5, resulting in a kinky-tail phenotype showing defects in the nucleus pulposus and annulus fibrosus of IVDs in SktGt/Gt mice. These phenotypes were different from those in Danforth's short tail (Sd) mice in which the nucleus pulposus was totally absent and replaced by peripheral fibers similar to those seen in the annulus fibrosus in all IVDs. The Skt gene maps to the proximal part of mouse chromosome 2, near the Sd locus. The genetic distance between them was 0.95 cM. The number of vertebrae in both [Sd +/+ SktGt] and [Sd SktGt/+ +] compound heterozygotes was less than that of Sd heterozygotes. Furthermore, the enhancer trap locus Etl4lacZ, which was previously reported to be an allele of Sd, was located in the third intron of the Skt gene.  相似文献   

8.
Knowledge of the molecular mechanisms regulating cell ingression, epithelial–mesenchymal transition and migration movements during amniote gastrulation is steadily improving. In the frog and fish embryo, Wnt5 and Wnt11 ligands are expressed around the blastopore and play an important role in regulating cell movements associated with gastrulation. In the chicken embryo, although Wnt5a and Wnt5b are expressed in the primitive streak, the known Wnt11 gene is expressed in paraxial and intermediate mesoderm, and in differentiated myocardial cells, but not in the streak. Here, we identify a previously uncharacterized chicken Wnt11 gene, Wnt11b, that is orthologous to the frog Wnt11 and zebrafish Wnt11 (silberblick) genes. Chicken Wnt11b is expressed in the primitive streak in a pattern similar to chicken Wnt5a and Wnt5b. When non-canonical Wnt signaling is blocked using a Dishevelled dominant-negative protein, gastrulation movements are inhibited and cells accumulate in the primitive streak. Furthermore, disruption of non-canonical Wnt signaling by overexpression of full-length or dominant-negative Wnt11b or Wnt5a constructions abrogates normal cell migration through the primitive streak. We conclude that non-canonical Wnt signaling, mediated in part by Wnt11b, is important for regulation of gastrulation cell movements in the avian embryo.  相似文献   

9.
10.
Elongation of the mouse anteroposterior axis depends on a small population of progenitors initially located in the primitive streak and later in the tail bud. Gene expression and lineage tracing have shown that there are many features common to these progenitor tissues throughout axial elongation. However, the identity and location of the progenitors is unclear. We show by lineage tracing that the descendants of 8.5 d.p.c. node and anterior primitive streak which remain in the tail bud are located in distinct territories: (1) ventral node descendants are located in the widened posterior end of the notochord; and (2) descendants of anterior streak are located in both the tail bud mesoderm, and in the posterior end of the neurectoderm. We show that cells from the posterior neurectoderm are fated to give rise to mesoderm even after posterior neuropore closure. The posterior end of the notochord, together with the ventral neurectoderm above it, is thus topologically equivalent to the chordoneural hinge region defined in Xenopus and chick. A stem cell model has been proposed for progenitors of two of the axial tissues, the myotome and spinal cord. Because it was possible that labelled cells in the tail bud represented stem cells, tail bud mesoderm and chordoneural hinge were grafted to 8.5 d.p.c. primitive streak to compare their developmental potency. This revealed that cells from the bulk of the tail bud mesoderm are disadvantaged in such heterochronic grafts from incorporating into the axis and even when they do so, they tend to contribute to short stretches of somites suggesting that tail bud mesoderm is restricted in potency. By contrast, cells from the chordoneural hinge of up to 12.5 d.p.c. embryos contribute efficiently to regions of the axis formed after grafting to 8.5 d.p.c. embryos, and also repopulate the tail bud. These cells were additionally capable of serial passage through three successive generations of embryos in culture without apparent loss of potency. This potential for self-renewal in chordoneural hinge cells strongly suggests that stem cells are located in this region.  相似文献   

11.
Gastrulation is a pivotal event of mouse early embryogenesis. In telencephalin (TLCN)-Cre mice carrying the Cre recombinase gene inserted into the translational initiation site of the TLCN gene, Cre-mediated recombination took place at the postimplantation stage. To examine the role of RhoA signaling in early embryogenesis, we produced Rho36 mice carrying constitutively active RhoA(G14V) gene inducible by Cre recombinase and crossed with TLCN-Cre mice. In doubly transgenic embryos at the gastrulation stage, there appeared an abnormal bulge of cells protruded from the primitive streak region into the amniotic cavity. The bulged cell mass expressed the epiblast marker gene Oct3 and E-cadherin, but not the primitive streak marker gene T except for the basal portion. These results suggest that the conditional activation of RhoA signaling suppressed the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation.  相似文献   

12.
Eph receptors have been implicated in cell-to-cell interaction during embryogenesis. We generated EphA2 mutant mice using a gene trap method. Homozygous mutant mice developed short and kinky tails. In situ hybridization using a Brachyury probe found the notochord to be abnormally bifurcated at the caudal end between 11.5 and 12.5 days post coitum. EphA2 was expressed at the tip of the tail notochord, while one of its ligands, ephrinA1, was at the tail bud in normal mice. In contrast, EphA2-deficient notochordal cells were spread broadly into the tail bud. These observations suggest that EphA2 and its ligands are involved in the positioning of the tail notochord through repulsive signals between cells expressing these molecules on the surface.  相似文献   

13.
Gene trapping in embryonic stem (ES) cells was used to identify a novel gene involved in mouse development. In order to screen trapped ES cell lines for the presence of developmentally regulated genes, an in vitro differentiation test was used. One of the G418 resistant cell lines, in conjunction with the lacZ reporter gene, showed differential expression patterns under differentiated and undifferentiated conditions. The gene trap insertion in this cell line was germ-line transmitted and X-gal staining was used to assess the expression pattern of lacZ in embryos heterozygous for the trapped allele. The reporter gene's expression was detected in commissural neurons in the developing spinal cord, suggesting functions for the trapped gene in mouse neural development. Structural analysis of the cDNA revealed that this trapped gene, named PRDC (protein related to DAN and cerberus), is a novel gene that encodes a putative secretory protein consisting of 168 amino acid residues. PRDC gene product shows limited similarities to the products of DAN (differential screening-selected gene aberrative in neuroblastoma) and cerberus . (DAN is a possible tumor-suppressor for neuroblastoma in human. Cerberus can induce an ectopic head in Xenopus embryos when ectopically expressed.) These three gene products may form a novel family of signaling molecules.  相似文献   

14.
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.  相似文献   

15.
The mouse gene trap strategy is an insertional mutagenesis involving an exogenous DNA, termed the trap vector, as a mutagen that produces a mutation in the mouse genome and a sequence tag to facilitate the isolation of the mutated genes. The trap vector consists of a reporter gene whose expression mimics that of the endogenous genes mutated and a selection marker that sorts cells bearing the inserted vector. Gene trap is a powerful method for identifying genes important in biological phenomena. Moreover, the method produces mutant organisms whose phenotypes provide invaluable information about the biological functions of the genes responsible for these phenotypes. Indeed, a number of genes essential for mouse embryogenesis have been identified by the gene trap method. Here, we describe the principle, results, and perspectives for applications of gene trap approach to the study of cell differentiation and lineage commitment.  相似文献   

16.
During mouse gastrulation, the primitive streak is formed on the posterior side of the embryo. Cells migrate out of the primitive streak to form the future mesoderm and endoderm. Fate mapping studies revealed a group of cell migrate through the proximal end of the primitive streak and give rise to the extraembryonic mesoderm tissues such as the yolk sac blood islands and allantois. However, it is not clear whether the formation of a morphological primitive streak is required for the development of these extraembryonic mesodermal tissues. Loss of the Cripto gene in mice dramatically reduces, but does not completely abolish, Nodal activity leading to the absence of a morphological primitive streak. However, embryonic erythrocytes are still formed and assembled into the blood islands. In addition, Cripto mutant embryos form allantoic buds. However, Drap1 mutant embryos have excessive Nodal activity in the epiblast cells before gastrulation and form an expanded primitive streak, but no yolk sac blood islands or allantoic bud formation. Lefty2 embryos also have elevated levels of Nodal activity in the primitive streak during gastrulation, and undergo normal blood island and allantois formation. We therefore speculate that low level of Nodal activity disrupts the formation of morphological primitive streak on the posterior side, but still allows the formation of primitive streak cells on the proximal side, which give rise to the extraembryonic mesodermal tissues formation. Excessive Nodal activity in the epiblast at pre‐gastrulation stage, but not in the primitive streak cells during gastrulation, disrupts extraembryonic mesoderm development.  相似文献   

17.
Despite its importance as the source of one of three major vascular systems in the mammalian conceptus, little is known about the murine allantois, which will become the umbilical cord of the chorio-allantoic placenta. During gastrulation, the allantois grows into the exocoelomic cavity as a mesodermal extension of the posterior primitive streak. On the basis of morphology, gene expression and/or function, three cell types have been identified in the allantois: an outer layer of mesothelial cells, whose distal portion will become transformed into chorio-adhesive cells, and endothelial cells within the core. Formation of endothelium and chorio-adhesive cells begins in the distal region of the allantois, farthest from the streak. Over time, endothelium spreads to the proximal allantoic region, whilst the distal outer layer of presumptive mesothelium gradually acquires vascular cell adhesion molecule (VCAM1) and mediates chorio-allantoic union. Intriguingly, the VCAM1 domain does not extend into the proximal allantoic region. How these three allantoic cell types are established is not known, although contact with the chorion has been discounted. In this study, we have investigated how the allantois differentiates, with the goal of discriminating between extrinsic mechanisms involving the primitive streak and an intrinsic role for the allantois itself. Exploiting previous observations that the streak contributes mesoderm to the allantois throughout the latter's early development, microsurgery was used to remove allantoises at ten developmental stages. Subsequent whole embryo culture of operated conceptuses resulted in the formation of regenerated allantoises at all time points. Aside from being generally shorter than normal, none of the regenerates exhibited abnormal differentiation or inappropriate cell relationships. Rather, all of them resembled intact allantoises by morphological, molecular and functional criteria. Moreover, fate mapping adjacent yolk sac and amniotic mesoderm revealed that these tissues and their associated bone morphogenetic protein 4 (BMP4) did not contribute to restoration of allantoic outgrowth and differentiation during allantoic regeneration. Thus, on the basis of these observations, we conclude that specification of allantoic endothelium, mesothelium and chorio-adhesive cells does not occur by a streak-related mechanism during the time that proximal epiblast travels through it and is transformed into allantoic mesoderm. Rather, all three cell-types are established by mechanisms intrinsic to the allantois, and possibly include roles for cell age and cell position. However, although chorio-adhesive cells were not specified within the streak, we discovered that the streak nonetheless plays a role in establishing VCAM1's expression domain, which typically began and was thereafter maintained at a defined distance from the primitive streak. When allantoises were removed from contact with the streak, normally VCAM1-negative proximal allantoic regions acquired VCAM1. These results suggested that the streak suppresses formation of chorio-adhesive cells in allantoic mesoderm closest to it. Together with previous results, findings presented here suggest a model of differentiation of allantoic mesoderm that invokes intrinsic and extrinsic mechanisms, all of which appear to be activated once the allantoic bud has formed.  相似文献   

18.
The three fibronectin leucine-rich repeat transmembrane (FLRT) proteins contain 10 leucine-rich repeats (LRR), a type III fibronectin (FN) domain, followed by the transmembrane region, and a short cytoplasmic tail. XFLRT3, a Nodal/TGFβ target, regulates cell adhesion and modulates FGF signalling during Xenopus gastrulation. The present study describes the onset and pattern of FLRT1-3 expression in the early mouse embryo. FLRT3 expression is activated in the anterior visceral endoderm (AVE), and during gastrulation appears in anterior streak derivatives namely the node, notochord and the emerging definitive endoderm. To explore FLRT3 function we generated a null allele via gene targeting. Early Nodal activities required for anterior-posterior (A-P) patterning, primitive streak formation and left-right (L-R) axis determination were unperturbed. However, FLRT3 mutant embryos display defects in headfold fusion, definitive endoderm migration and a failure of the lateral edges of the ventral body wall to fuse, leading to cardia bifida. Surprisingly, the mutation has no effect on FGF signalling. Collectively these experiments demonstrate that FLRT3 plays a key role in controlling cell adhesion and tissue morphogenesis in the developing mouse embryo.  相似文献   

19.
The primate SIGLEC12 gene encodes one of the CD33-related Siglec family of signaling molecules in immune cells. We had previously reported that this gene harbors a human-specific missense mutation of the codon for an Arg residue required for sialic acid recognition. Here we show that this R122C mutation of the Siglec-XII protein is fixed in the human population, i.e. it occurred prior to the origin of modern humans. Additional mutations have since completely inactivated the SIGLEC12 gene in some but not all humans. The most common inactivating mutation with a global allele frequency of 58% is a single nucleotide frameshift that markedly shortens the open reading frame. Unlike other CD33-related Siglecs that are primarily found on immune cells, we found that Siglec-XII protein is expressed not only on some macrophages but also on various epithelial cell surfaces in humans and chimpanzees. We also found expression on certain human prostate epithelial carcinomas and carcinoma cell lines. This expression correlates with the presence of the nonframeshifted, intact SIGLEC12 allele. Although SIGLEC12 allele status did not predict prostate carcinoma incidence, restoration of expression in a prostate carcinoma cell line homozygous for the frameshift mutation induced altered regulation of several genes associated with carcinoma progression. These stably transfected Siglec-XII-expressing prostate cancer cells also showed enhanced growth in nude mice. Finally, monoclonal antibodies against the protein were internalized by Siglec-XII-expressing prostate carcinoma cells, allowing targeting of a toxin to such cells. Polymorphic expression of Siglec-XII in humans thus has implications for prostate cancer biology and therapeutics.  相似文献   

20.
The Dpp/BMP signaling pathway is highly conserved between vertebrates and invertebrates. The recent molecular characterization of the Drosophila crossveinless-2 (cv-2) mutation by Conley and colleagues introduced a novel regulatory step in the Dpp/BMP pathway (Development 127 (2000) 3945). The CV-2 protein is secreted and contains five cysteine-rich (CR) domains similar to those observed in the BMP antagonist Short gastrulation (Sog) of Drosophila and Chordin (Chd) of vertebrates. The mutant phenotype in Drosophila suggests that CV-2 is required for the differentiation of crossvein structures in the wing which require high Dpp levels. Here we present the mouse and human homologs of the Drosophila cv-2 protein. The mouse gene is located on chromosome 9A3 while the human locus maps on chromosome 7p14. CV-2 is expressed dynamically during mouse development, in particular in regions of high BMP signaling such as the posterior primitive streak, ventral tail bud and prevertebral cartilages. We conclude that CV-2 is an evolutionarily conserved extracellular regulator of the Dpp/BMP signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号