共查询到20条相似文献,搜索用时 15 毫秒
1.
Ushakov DS Caorsi V Ibanez-Garcia D Manning HB Konitsiotis AD West TG Dunsby C French PM Ferenczi MA 《The Journal of biological chemistry》2011,286(1):842-850
We applied fluorescence lifetime imaging microscopy to map the microenvironment of the myosin essential light chain (ELC) in permeabilized skeletal muscle fibers. Four ELC mutants containing a single cysteine residue at different positions in the C-terminal half of the protein (ELC-127, ELC-142, ELC-160, and ELC-180) were generated by site-directed mutagenesis, labeled with 7-diethylamino-3-((((2-iodoacetamido)ethyl)amino)carbonyl)coumarin, and introduced into permeabilized rabbit psoas fibers. Binding to the myosin heavy chain was associated with a large conformational change in the ELC. When the fibers were moved from relaxation to rigor, the fluorescence lifetime increased for all label positions. However, when 1% stretch was applied to the rigor fibers, the lifetime decreased for ELC-127 and ELC-180 but did not change for ELC-142 and ELC-160. The differential change of fluorescence lifetime demonstrates the shift in position of the C-terminal domain of ELC with respect to the heavy chain and reveals specific locations in the lever arm region sensitive to the mechanical strain propagating from the actin-binding site to the lever arm. 相似文献
2.
Available high-resolution structures of F-actin, myosin subfragment 1 (S1), and their complex, actin-S1, were used to calculate a 2D x-ray diffraction pattern from skeletal muscle in rigor. Actin sites occupied by myosin heads were chosen using a "principle of minimal elastic distortion energy" so that the 3D actin labeling pattern in the A-band of a sarcomere was determined by a single parameter. Computer calculations demonstrate that the total off-meridional intensity of a layer line does not depend on disorder of the filament lattice. The intensity of the first actin layer A1 line is independent of tilting of the "lever arm" region of the myosin heads. Myosin-based modulation of actin labeling pattern leads not only to the appearance of the myosin and "beating" actin-myosin layer lines in rigor diffraction patterns, but also to changes in the intensities of some actin layer lines compared to random labeling. Results of the modeling were compared to experimental data obtained from small bundles of rabbit muscle fibers. A good fit of the data was obtained without recourse to global parameter search. The approach developed here provides a background for quantitative interpretation of the x-ray diffraction data from contracting muscle and understanding structural changes underlying muscle contraction. 相似文献
3.
Motion of myosin cross-bridges in skeletal muscle fibers studied by time-resolved fluorescence anisotropy decay 总被引:1,自引:0,他引:1
The time-resolved fluorescence polarization anisotropy signal has been measured from fluorescent-labeled myosin cross-bridges in single glycerinated muscle fibers in the relaxed and rigor states. In one experimental configuration, the polarization of the excitation light and the fiber axis are aligned, and the anisotropy is sensitive to rotational motions of the probes about axes other than the fiber axis. The rotational correlation times are approximately 1000 ns for relaxed fibers and greater than 7000 ns for rigor fibers. In another experimental configuration, the excitation light polarization is perpendicular to the fiber axis, and its propagation vector has a component parallel to the fiber axis so that the anisotropy is sensitive to probe rotational motion about different axes, including the fiber axis. In this configuration, the rotational correlation times are approximately 300 ns for both relaxed and rigor fibers. The theory of rotational diffusion in a potential described in a related paper [Burghardt, T.P. (1985) Biophys. J. (in press)] is applied to the relaxed fiber data. 相似文献
4.
Thermoelastic properties of cross-bridges were measured by application of small sinusoidal length perfurbations and submillisecond Joulean temperature jump to chemically skinned muscle fibre removed from rigor solution. The thermal expansion coefficient of fibres was 4.2 +/- 1.0 X 10(-5) K-1. We have observed neither rubber-like stiffness increase, nor tension increase and stiffness decrease (which are expected if alpha-coil melting occurs) after temperature jump. 相似文献
5.
Observation of two orientations from rigor cross-bridges in glycerinated muscle fibers 总被引:1,自引:0,他引:1
The fluorescence polarization from rhodamine labels specifically attached to the fast-reacting thiol of the myosin cross-bridge in glycerinated muscle fibers has been measured to determine the angular distribution of the cross-bridges in different physiological states of the fibers as a function of temperature. To investigate the fibers at temperatures below 0 degree C, we have added glycerol to the bathing solution as an anti-freezing agent. We find that the fluorescence polarization from the rhodamine probe detects distinct angular distributions of the cross-bridges in isometric-active, rigor, MgADP, and low ionic strength relaxed fibers at 4 degrees C. We also find that the rigor cross-bridges in the presence of glycerol can maintain at least two distinct orientations relative to the actin filament, one dominant at temperatures T greater than 2 degrees C and another dominant at T less than -10 degrees C. MgADP cross-bridges in the presence of glycerol maintain approximately the same orientation for all temperatures investigated. The rigor cross-bridge orientation at T less than -10 degrees C is similar to both the MgADP cross-bridge orientation in the presence of glycerol and the active muscle cross-bridge orientation at 4 degrees C. These findings show that the rigor cross-bridge in the presence of glycerol has at least two distinct orientations while attached to actin: one of them dominant at high temperature, the other dominant at low temperature or when MgADP is present. The latter orientation resembles that present in isometric-active fibers.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Extensibility of the myofilaments in vertebrate skeletal muscle as revealed by stretching rigor muscle fibers 总被引:2,自引:0,他引:2 下载免费PDF全文
The extensibility of the myofilaments in vertebrate skeletal muscle was studied by stretching glycerinated rabbit psoas muscle fibers in rigor state and examining the resulting extension of sarcomere structures under an electron microscope. Although stretches applied to rigor fibers produced a successive yielding of the weakest sarcomeres, the length of the remaining intact sarcomeres in many myofibrils was fairly uniform, being definitely longer than the sarcomeres in the control, nonstretched part of rigor fibers. The stretch-induced increase in sarcomere length was found to be taken up by the extension of the H zone and the I band, whereas the amount of overlap between the thick and thin filaments did not change appreciably with stretches of 10-20%. The thick filament extension in the H zone was localized in the bare regions, whereas the thin filament extension in the I band appeared to take place uniformly along the filament length. No marked increase in the Z-line width was observed even with stretches of 20-30%. These results clearly demonstrate the extensibility of the thick and thin filaments. The possible contribution of the myofilament compliance to the series elastic component (SEC) in vertebrate skeletal muscle fibers is discussed on the basis of the electron microscopic data and the force-extension curve of the SEC in rigor fibers. 相似文献
7.
Binding of adenosine diphosphate to skeletal muscle myosin was studied using a range of concentrations from 0 to 2 mM. Up to 0.2 mM adenosine diphosphate two equivalent and independent nucleotide binding sites were detected, characterized by the single association constant of 5 x 10(4)M(-1). At greater adenosine diphosphate concentrations a decreasing binding capacity was noticed, bound nucleotide being essentially approximately 0.1 mol/mol at a 1-2mM adenosine diphosphate concentration. We tentatively propose that nucleotides act indirectly on myosin by promoting the perturbation of the solvent, which is supported by the fact that polyphosphates are known powerful kosmotropes. 相似文献
8.
Role of magnesium binding to myosin in controlling the state of cross-bridges in skeletal rabbit muscle 总被引:3,自引:0,他引:3
The effect of Mg2+ on the disposition of myosin cross-bridges was studied on myofibrils and synthetic myosin and rod filaments by employing chymotryptic digestion and chemical cross-linking methods. In the presence of low Mg2+ concentrations (0.1 mM), the proteolytic susceptibility at the heavy meromyosin/light meromyosin (HMM/LMM) junction in these three systems sharply increases over the pH range from 7.0 to 8.2. Such a change has been previously associated with the release of myosin cross-bridges from the filament surface [Ueno, H., & Harrington, W.F. (1981) J. Mol. Biol. 149, 619-640]. Millimolar concentrations of Mg2+ block or reverse this charge-dependent transition. Rod filaments show the same behavior as myosin filaments, indicating that the low-affinity binding sites for Mg2+ are located on the rod portion of myosin. The interpretation of these results in terms of Mg2+-mediated binding of cross-bridges to the filament backbone is supported by cross-linking experiments. The normalized rate of S-2 cross-linking in rod filaments at pH 8.0, kS-2/kLMM, increases upon addition of Mg2+ from 0.30 to 0.65 and approaches the cross-linking rate measured at pH 7.0 (0.75), when the cross-bridges are close to the filament surface. In rod filaments prepared from oxidized rod particles, chymotryptic digestion proceeds both at the S-2/LMM junction and at a new cleavage site located in the N-terminal portion of the molecule. Kinetic analysis of digestion rates at these two sites reveals that binding of Mg2+ to oxidized myosin rods has a similar effect at both sites over the pH range from 7.0 to 8.0.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Tension transients initiated by photogeneration of MgADP in skinned skeletal muscle fibers 总被引:6,自引:0,他引:6
《The Journal of general physiology》1993,101(6):867-888
Addition of MgADP to skinned skeletal muscle fibers causes a rise in Ca(2+)-activated isometric tension. Mechanisms underlying this tension increase have been investigated by rapid photogeneration of ADP within skinned single fibers of rabbit psoas muscle. Photolysis of caged ADP (P2-1(2-nitrophenyl)ethyladenosine 5'-diphosphate) resulted in an exponential increase in isometric tension with an apparent rate constant, kADP, of 9.6 +/- 0.3 s-1 (mean +/- SE, n = 28) and an amplitude, PADP, of 4.9 +/- 0.3% Po under standard conditions (0.5 mM photoreleased MgADP, 4 mM MgATP, pH 7.0, pCa 4.5, 0.18 M ionic strength, 15 degrees C). PADP depended upon the concentration of photoreleased MgADP as well as the concentration of MgATP. A plot of 1/PADP vs. 1/[MgADP] at three MgATP concentrations was consistent with competition between MgADP and MgATP for the same site on the crossbridge. The rate of the transient, kADP, also depended upon the concentration of MgADP and MgATP. At both 4 and 1 mM MgATP, kADP was not significantly different after photorelease of 0.1-0.5 mM MgADP, but was reduced by 28-40% when 3.5 mM MgADP was added before photorelease of 0.5 mM MgADP. kADP was accelerated by about twofold when MgATP was varied from 0.5 to 8 mM MgATP. These effects of MgATP and MgADP were not readily accounted for by population of high force-producing states resulting from reversal of the ADP dissociation process. Rather, the results suggest that competition between MgADP and MgATP for crossbridges at the end of the cycle slows detachment leading to accumulation of force-generating crossbridges. Elevation of steady- state Pi concentration from 0.5 to 30 mM caused acceleration of kADP from 10.2 +/- 0.5 to 27.8 +/- 1.8 s-1, indicating that the tension rise involved crossbridge flux through the Pi dissociation step of the cycle. 相似文献
10.
The effect of thin filament activation on the attachment of weak binding cross-bridges: A two-dimensional x-ray diffraction study on single muscle fibers 下载免费PDF全文
To study possible structural changes in weak cross-bridge attachment to actin upon activation of the thin filament, two-dimensional (2D) x-ray diffraction patterns of skinned fibers from rabbit psoas muscle were recorded at low and high calcium concentration in the presence of saturating concentrations of MgATPgammaS, a nucleotide analog for weak binding states. We also studied 2D x-ray diffraction patterns recorded under relaxing conditions at an ionic strength above and below 50 mM, because it had been proposed from solution studies that reducing ionic strength below 50 mM also induces activation of the thin filament. For this project a novel preparation had to be established that allows recording of 2D x-ray diffraction patterns from single muscle fibers instead of natural fiber bundles. This was required to minimize substrate depletion or product accumulation within the fibers. When the calcium concentration was raised, the diffraction patterns recorded with MgATPgammaS revealed small changes in meridional reflections and layer line intensities that could be attributed in part to the effects of calcium binding to the thin filament (increase in I380, decrease in first actin layer line intensity, increase in I59) and in part to small structural changes of weakly attached cross-bridges (e.g., increase in I143 and I72). Calcium-induced small-scale structural rearrangements of cross-bridges weakly attached to actin in the presence of MgATPgammaS are consistent with our previous observation of reduced rate constants for attachment and detachment of cross-bridges with MgATPgammaS at high calcium. Yet, no evidence was found that weakly attached cross-bridges change their mode of attachment toward a stereospecific conformation when the actin filament is activated by adding calcium. Similarly, reducing ionic strength to less than 50 mM does not induce a transition from nonstereospecific to stereospecific attachment. 相似文献
11.
Optical depolarization changes on the diffraction pattern in the transition of skinned muscle fibers from relaxed to rigor state 下载免费PDF全文
Light diffraction spectra from single or small bundles of skinned striated muscle fibers show large changes in polarization properties when muscles are placed into rigor. The technique of combining optical diffraction and ellipsometry measurements has previously been shown by Yeh and Pinsky to be a sensitive probe of periodic anisotropic regions of the fiber. In the present work, using this method, the observed spectrum shows marked decrease in the measured phase angle, delta, as the fiber approaches the rigor state. The degree of phase angle change is a function of sarcomere length: Maximum overlap of approximately 2.3 microns gives the most change in delta a delta delta R-R approximately 35 degrees decrease for a bundle of three fibers. At a sarcomere length of 2.9 microns this delta delta R-R value is only 10 degrees. At a nonoverlapping length of approximately 3.8 microns, delta does not vary at all upon the removal of ATP. The rigor state was confirmed by stiffness measurements made after small-amplitude (0.75%), quick length changes. Upon re-relaxation, the stiffness of the skinned fiber decreased to the value of the resting state (4 mM ATP) and the phase angle delta returned to its original value. A model based on either anisotropic subunit-2 (S-2) movements or other cross-bridge-related structural anisotropy (form birefringence) changes during the relaxed-rigor transition is suggested. 相似文献
12.
When skeletal muscle fibers are subjected to a hydrostatic pressure of 10 MPa (100 atmospheres), reversible changes in tension occur. Passive tension from relaxed muscle is unaffected, rigor tension rises, and active tension falls. The effects of pressure on muscle structure are unknown: therefore a pressure-resistant cell for x-ray diffraction has been built, and this paper reports the first study of the low-angle equatorial patterns of pressurized relaxed, rigor, and active muscle fibers, with direct comparisons from the same chemically skinned rabbit psoas muscle fibers at 0.1 and 10 MPa. Relaxed and rigor fibers show little change in the intensity of the equatorial reflections when pressurized to 10 MPa, but there is a small, reversible expansion of the lattice of 0.7 and 0.4%, respectively. This shows that the order and stability of the myofilament lattice is undisturbed by this pressure. The rise in rigor tension under pressure is thus probably due to axial shortening of one or more components of the sarcomere. Initial results from active fibers at 0.1 MPa show that when phosphate is added the lattice spacing and equatorial intensities change toward their relaxed values. This indicates cross-bridge detachment, as expected from the reduction in tension that phosphate induces. 10 MPa in the presence of phosphate at 11 degrees C causes tension to fall by a further 12%, but not change is detected in the relative intensity of the reflections, only a small increase in lattice spacing. Thus pressure appears to increase the proportion of attached cross-bridges in a low-force state. 相似文献
13.
Rigor-force producing cross-bridges in skeletal muscle fibers activated by a substoichiometric amount of ATP 下载免费PDF全文
Isometric skinned muscle fibers were activated by the photogeneration of a substoichiometric amount of ATP and their cross-bridge configurations examined during the development of the rigor force by x-ray diffraction and electron microscopy. By the photogeneration of approximately 100 microM ATP, approximately 2/3 of the concentration of the myosin heads in a muscle fiber, muscle fibers originally in the rigor state showed a transient drop of the force and then produced a long-lasting rigor force (approximately 50% of the maximal active force), which gradually recovered to the original force level with a time constant of approximately 4 s. Associated with the photoactivation, muscle fibers revealed small but distinct changes in the equatorial x-ray diffraction that run ahead of the development of force. After reaching a plateau of force, long-lasting intensity changes in the x-ray diffraction pattern developed in parallel with the force decline. Two-dimensional x-ray diffraction patterns and electron micrographs of the sectioned muscle fibers taken during the period of 1-1.9 s after the photoactivation were basically similar to those from rigor preparations but also contained features characteristic of fully activated fibers. In photoactivated muscle fibers, some cross-bridges bound photogenerated ATP and underwent an ATP hydrolysis cycle whereas a significant population of the cross-bridges remained attached to the thin actin filaments with no available ATP to bind. Analysis of the results obtained indicates that, during the ATP hydrolysis reaction, the cross-bridges detached from actin filaments and reattached either to the same original actin monomers or to neighboring actin monomers. The latter cross-bridges contribute to produce the rigor force by interacting with the actin filaments, first producing the active force and then being locked in a noncycling state(s), transforming their configuration on the actin filaments to stably sustain the produced force as a passive rigor force. 相似文献
14.
A theoretical discussion is presented describing the diffraction of laser light by a single fiber of striated muscle. The complete three-dimensional geometry of the fiber has been taken into consideration. The basic repeated unit is taken as the sarcomere of a single myofibril, including its cylindrical geometry. The single fiber is considered as the sum of myofibrils up to the fiber dimensions. When proper phasing is taken into account, three cases of interest are analyzed. (a) When the adjacent myofibrils are totally aligned with respect to their index of refraction regions (e.g., A and I bands), then the diffraction pattern reflects that of a larger striated cylinder with the dimensions of the fiber. (b) When a particular skew plane develops for the myofibril elements, additional Bragg reflection occurs at certain specific sarcomere lengths, and intensity asymmetry amongst the diffracted orders occurs. (c) When the myofibril phasing changes in a random fashion, while all sarcomeres remain at the same length, then intensity decrease is directly related to the phase deviation from a reference phase point. This condition may well describe a fiber undergoing active isometric contraction. 相似文献
15.
M. Schoenberg 《Biophysical journal》1989,56(1):33-41
It is commonly believed, for both vertebrate striated and insect flight muscle, that when the ATP analogue adenyl-5'-yl imidodiphosphate (AMPPNP) is added to the muscle fiber in rigor, it causes the fiber to lengthen by 0.15%. This has been interpretated (Marston S.B., C.D. Roger, and R.T. Tregear. 1976. J. Mol. Biol. 104:263-267) as suggesting (a) that in rigor the crossbridge is fixed to, i.e., almost never detaches from the actin filament; (b), that the crossbridge remains fixed to the actin filament after AMPPNP addition; and (c) that the ability of AMPPNP to cause apparent lengthening of a muscle fiber is due to its ability to cause a conformational change in the myosin crossbridge that has an axial component of approximately 1.6 nm/half-sarcomere. The present study, done only on chemically-skinned rabbit psoas fibers, confirms that AMPPNP can cause muscle fibers to lengthen by 0.15% but only for a narrow set of experimental conditions. When experimental conditions are varied over a wider range, it becomes apparent that the extent of lengthening of a rigor muscle fiber upon AMPPNP addition depends almost entirely on the strain present in the rigor fiber before AMPPNP addition. Addition of AMPPNP to an unstrained rigor fiber (one supporting zero tension), induces zero length change while addition of AMPPNP to very highly strained rigor fibers induces length changes greater than 0.15%. The data thus do not support the hypotheses that the crossbridges remain fixed to the actin filament after AMPPNP addition and that the size of the apparent length change induced by AMPPNP is related to the size of the axial component of a conformational change.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
The effects of rigor and cycling cross-bridges on distributions of calcium (Ca) bound within sarcomeres of rabbit psoas muscle fibers were compared using electron probe x-ray microanalysis. Calcium in the overlap region of rigor fibers, after correction for that bound to thick filaments, was significantly higher than in the I-band at all pCa levels tested between 6.9 and 4.8, but the difference was greatest at pCa 6.9. With addition of MgATP, differences were significant at high levels of activation (pCa 5.6 and 4.9); near and below the threshold for activation, Ca was the same in I-band and overlap regions. Comparison of Ca and mass profiles at the A-I junction showed elevation of Ca extending 55-110 nm (up to three regulatory units) into the I-band. Extraction of TnC-reduced I-band and overlap Ca in rigor fibers at pCa 5.6 to the same levels found in unextracted fibers at pCa 8.9, suggesting that variations reported here reflect changes in Ca bound to troponin C (TnC). Taken together, these observations provide evidence for near-neighbor cooperative effects of both rigor and cycling cross-bridges on Ca(2+) binding to TnC. 相似文献
17.
The binding of 45Ca2+ to glycerinated rabbit psoas fibers was measured by means of a double isotope technique. With 5 mM Mg2+ (no ATP) binding was half-maximal at 1.4 · 10?6M Ca2+ and the maximal amount bound was 1.6 μmol/g protein. At < 50% saturation, the Scatchard plot had a positive slope and the Hill coefficient was 2.2. At greater than 50% saturation, the Scatchard plot was linear with a negative slope (K′ = 0.8 · 106 M?1) and the Hill coefficient was 1.0. In the absence of Mg2+, binding was half-maximal at 3 · 10?7 M Ca2+ and the maximal amount bound was 2.9 μmol/g protein. The Scatchard plot indicated two classes of sites with K′ values of about 2 · 107 and 2 · 106 M?1. The Hill coefficient in the mid-saturation range was approx. 0.6. The data indicate that in the presence of Mg2+ binding to about half of the total Ca2+ binding sites is suppressed and there is a strong positive cooperativity involving half of the remaining sites. 相似文献
18.
Structural changes of cross-bridges on transition from isometric to shortening state in frog skeletal muscle 下载免费PDF全文
Structural changes in the myosin cross-bridges were studied by small-angle x-ray diffraction at a time resolution of 0.53 ms. A frog sartorius muscle, which was electrically stimulated to induce isometric contraction, was released by approximately 1% in 1 ms, and then its length was decreased to allow steady shortening with tension of approximately 30% of the isometric level. Intensity of all reflections reached a constant level in 5-8 ms. Intensity of the 7.2-nm meridional reflection and the (1,0) sampling spot of the 14.5-nm layer line increased after the initial release but returned to the isometric level during steady shortening. The 21.5-nm meridional reflection showed fast and slow components of intensity increase. The intensity of the 10.3-nm layer line, which arises from myosin heads attached to actin, decreased to a steady level in 2 ms, whereas other reflections took longer, 5-20 ms. The results show that myosin heads adapt quickly to an altered level of tension, and that there is a distinct structural state just after a quick release. 相似文献
19.
Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening 下载免费PDF全文
Force, sarcomere length, and equatorial x-ray reflections (using synchrotron radiation) were studied in chemically skinned bundles of fibers from Rana temporaria sartorius muscle, activated by UV flash photolysis of a new photolabile calcium chelator, NP-EGTA. Experiments were performed with or without compression by 3% dextran at 4 degrees C. Isometric tension developed at a similar rate (t(1/2) = 40 +/- 5 ms) to the development of tetanic tension measured in other studies (Cecchi et al., 1991). Changes in intensity of equatorial reflections (I(11) t(1/2), 15-19 ms; I(10) t(1/2), 24-26 ms) led isometric tension development and were faster than for tetanus. During shortening at 0.14P(o), I(10) and I(11) changes were partially reversed (18% and 30%, respectively, compressed lattice), in agreement with intact cell data. In zero dextran, activation caused a compression of A-band lattice spacing by 0.7 nm. In 3% dextran, activation caused an expansion of 1.4 nm, consistent with an equilibrium spacing of 45 nm. But, in both cases, discharge of isometric tension by shortening caused a rapid lattice expansion of 1.0-1.1 nm, suggesting discharge of a compressive cross-bridge force, with or without compression by dextran, and the development of an additional expansive force during activation. In contrast to I(10) and I(11) data, these findings for lattice spacing did not resemble intact fiber data. 相似文献
20.
Efficiency of light diffraction by cross-striated muscle fibers under stretch and during isometric contraction. 下载免费PDF全文
When light is diffracted by a single frog muscle fiber the intensities I kappa of the different orders kappa (kappa = 1,2,3) strongly depend on the angle between the axis of the incident beam and the fiber axis. Maximum intensity is not obtained with perpendicular incidence (omega = 0 degree) but at angles that can be calculated for each order number and sarcomere length using Bragg's formula. In analogy to techniques developed for x-ray structure analysis of mosaic crystals we have rotated the fiber around an axis perpendicular to the fiber axis and to the incident beam axis within an angular range delta omega = +/- 35 degrees and recorded the light intensities I kappa. Diffraction efficiencies defined as E kappa = integral of I kappa d omega were studied as a function of sarcomere length and during isometric contraction. The sarcomere length dependences of the efficiencies E kappa of the first three orders show characteristic trends. E1 increases with fiber stretch, E2 has a minimum at a sarcomere length near 2.8 micrometers, and E3 has a maximum near 2.5 micrometers. These trends as well as the observed efficiency ratios are in fairly good agreement with predictions by the intensity formula developed for x-ray structure analysis. During isometric contraction, the diffraction efficiencies of the fiber decrease, with the decreases becoming greater the higher the order number. These decreases might be caused by a longitudinal displacement of myofibrils of up to 0.4 micrometers. The efficiency of light diffraction strongly depends on the tonicity of the bathing fluid. Hypertonic (3/2 x normal) solution reduces E1 to less than half, hypotonic (2/3 x normal) solution increases E1 to almost twice the value obtained in normal Ringer's solution. 相似文献