首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Plant cells are sensitive to the antibiotic bleomycin, a DNA damaging glycopeptide. A bleomycin resistance determinant, located on transposon Tn5 and functional in bacteria, has been cloned in a plant expression vector and introduced into Nicotiana plumbaginifolia using Agrobacterium tumefaciens. The expression of this determinant in plant cells confers resistance to bleomycin and allows selection of transformed plant cells.  相似文献   

2.
Summary Phleomycin, a water-soluble antibiotic of the bleomycin family is as effective against Saccharomyces cerevisiae cells as against Escherichia coli cells. The ble gene of transposon Tn5, which confers resistance to phleomycin, was inserted in place of the iso-1-cytochrome C (CYC1) gene on an autonomously replicative multicopy E. coli-yeast shuttle plasmid. Higher resistance levels are obtained in S. cerevisiae when the region immediately upstream from the initiation codon conforms to the nucleotide sequence stringencies observed in almost every yeast gene. The expected regulation pattern of the whole CYC1 promoter confers different phleomycin resistance levels to the cell under varying physiological conditions. Partial deletions in the CYC1 promoter lead to changes in the resistance level of cells which are mostly accounted for by the removal of known positive and negative regulatory elements. Some of the vector constructions allow direct selection of phleomycin-resistant transformants on rich media.  相似文献   

3.
The newpPZP Agrobacterium binary vectors are versatile, relatively small, stable and are fully sequenced. The vectors utilize the pTiT37 T-DNA border regions, the pBR322bom site for mobilization fromEscherichia coli toAgrobacterium, and the ColE1 and pVS1 plasmid origins for replication inE. coli and inAgrobacterium, respectively. Bacterial marker genes in the vectors confer resistance to chloramphenicol (pPZP100 series) or spectinomycin (pPZP200 series), allowing their use inAgrobacterium strains with different drug resistance markers. Plant marker genes in the binary vectors confer resistance to kanamycin or to gentamycin, and are adjacent to the left border (LB) of the transferred region. A lacZ -peptide, with the pUC18 multiple cloning site (MCS), lies between the plant marker gene and the right border (RB). Since the RB is transferred first, drug resistance is obtained only if the passenger gene is present in the transgenic plants.  相似文献   

4.
Summary Plant cells in photoheterotrophic culture respond to streptomycin by bleaching and retarded growth but no cell death. A new genetic marker for plant cell transformation has been developed that is based on the expression of the enzyme streptomycin phosphotransferase (SPT), and confers the ability to form green colonies on a selective medium. Coding sequences of SPT from the bacterial transposon Tn5 were placed under the control of gene expression signals derived from the Agrobacterium Ti plasmid Ach5. The 5 end of the SPT gene has been replaced with the promoter region of the gene coding for the first enzyme of agropine biosynthesis, the 3 end with that of the enzyme octopine synthase. The chimeric SPT gene has been linked to a selectable kanamycin resistance gene, and introduced into Nicotiana tabacum and Nicotiana plumbaginifolia by selection for the linked kanamycin resistance marker. Streptomycin resistance was expressed in some but not all of the kanamycin-resistant lines and was transmitted to the seed progeny as a dominant nuclear trait.  相似文献   

5.
Summary Selectable marker genes play an important role in plant transformation. The level of selection pressure is generally established by generating a kill curve for the selectable marker. In most cases, the lowest concentration which kills all explants is used. This study examined two selectable marker genes, phosphinothricin acetyl transferase (PAT) and hygromycin phosphotransferase (HPT), in transformation of tobacco leaf disks. Experiments to determine the lethal level of the herbicide, glufosinate-ammonium (phosphinothricin) (PPT) using a leaf-disk regeneration assay established that no shoots regenerated at 2 to 4 mg PPT per 1. Likewise with the antibiotic, hygromycin (HYG), no plants regenerated at 50 mg hygromycin per 1. In contrast, after cocultivation of the leaf disks withAgrobacterium tumefaciens containing either the PAT or HPT gene in combination with a Bt gene for insect resistance, plants were successfully regenerated from leaf disks at 2 to 4 mg PPT per 1 and 50 mg hygromycin per 1. However, most plants regenerated at 2 and 3 mg PPT per 1 were found to be nontransformed (95–100% escapes) by i) Southern-blot analysis, ii) herbicide application test, and iii) insect feeding bioassay. On the other hand, plants that regenerated on 50 mg hygromycin per 1 and 4 mg PPT per 1 were transgenic as determined by Southern analysis, leaf assay for PPT or HYG resistance, and death of tobacco budworms feeding on these leaves. This study showed a significant level of cross-protection and/or transient expression of the PAT selectable marker gene allowing escapes (95–100%) at selection levels of 2 and 3 mg PPT per 1 which completely kill controls. On the other hand, the HPT gene at 50 mg is efficient in selecting for T-DNA integration.  相似文献   

6.
Alternative selection systems for plant transformation are especially valuable in clonal crops, such as potato (Solanum tuberosum L.), to pyramid transgenes into the same cultivar by successive transformation events. We have modified the pGPTV series of binary vectors to construct pMOA1 to pMOA5, resulting in a series of essentially identical binary vectors except for the presence of different selectable marker genes. These selectable marker genes are tightly inserted between the left and right T-DNA borders and confer resistance to kanamycin (nptII), hygromycin (hpt), methotrexate (dhfr), phosphinothricin (bar), or phleomycin (ble). The T-DNA of all the vectors is based on the minimal features necessary for plant transformation, with no extraneous DNA segments that may be unacceptable to regulatory authorities for general release of transgenic plants. A series of unique restriction sites exists between the right border and each selectable marker gene for subsequent insertion of useful genes. We have also developed improved culture procedures for potato transformation and used the pMOA1 to pMOA5 binary vectors to define stringent selection conditions for each marker gene. Combining these advances improved the frequency of recovering transformed potato plants while maintaining a low frequency of escapes. The relative efficiency of recovering transgenic potato lines with each selectable marker gene can be summarised as: kanamycin resistance>hygromycin resistance>phosphinothricin resistance>phleomycin resistance>methotrexate resistance.  相似文献   

7.
Ebmeier A  Allison L  Cerutti H  Clemente T 《Planta》2004,218(5):751-758
The initial step in the synthesis of isoleucine (Ile) is the conversion of threonine to -ketobutyrate. This reaction is carried out by threonine deaminase (TD), which is feedback-regulated by Ile. Mutations in TD that manifest insensitivity to Ile feedback inhibition result in intracellular accumulation of Ile. Previous reports have shown that in planta expression of the wild-type Escherichia coli TD, ilvA, or an Ile-insensitive mutant designated ilvA-466, increased cellular concentrations of Ile. A structural analog of Ile, l-O-methylthreonine (OMT), is able to compete effectively with Ile during translation and induce cell death. It has been postulated that OMT could therefore be utilized as an effective selective agent in plant engineering studies. To test this concept, we designed two binary plasmids that harbored an nptII cassette and either the wild-type ilvA or mutant ilvA-466. The ilvA coding sequences were fused to a plastid transit peptide down stream of a modified 35S CaMV promoter. Tobacco transformations were set up implementing a selection protocol based on either kanamycin or OMT. The ilvA gene was effectively utilized as a selectable marker gene to identify tobacco transformants when coupled with OMT as the selection agent. However, the transformation efficiency was substantially lower than that observed with nptII using kanamycin as the selection agent. Moreover, in a subset of the ilvA transformants and in a majority of the ilvA-466 transgenic lines, a severe off-type was observed under greenhouse conditions that correlated with increased levels of expression of the ilvA transgene.Abbreviations ELISA enzyme-linked immunosorbent assay - Ile isoleucine - OMT l-O-methylthreonine - nptII neomycin phosphotransferase II - TD threonine deaminase  相似文献   

8.
A chimeric gene composed of the coding sequence of theble gene fromStreptoalloteichus hindustanus fused to the 5 and 3 untranslated regions of theChlamydomonas reinhardtii nuclear geneRBCS2 has been constructed. Introduction of this chimeric gene into the nuclear genome ofC. reinhardtii by co-transformation with theARG7 marker yields Arg+ transformants of which approximately 80% possess theble gene. Of these co-transformants, approximately 3% display a phleomycin-resistant (PmR) phenotype. Western blot analysis using antibodies against theble gene product confirms the presence of the protein in the PmR transformants and genetic analysis demonstrates the co-segregation of theble gene with the phenotype in progeny arising from the mating of a PmR transformant to wild-type strains. Direct selection of PmR transformants was achieved by allowing an 18-h period for recovery and growth of transformed cells prior to selection. This work represents the first demonstration of stable expression and inheritance of a foreign gene in the nuclear genome ofC. reinhardtii and provides a useful dominant marker for nuclear transformation.  相似文献   

9.
A transformation system was established for red raspberry, blackberry and blackberry x raspberry hybrids, utilizing the binary vector system of Agrobacterium tumefaciens. Leaf discs or internodal stem segments were inoculated with Agrobacterium strain LBA4404 containing the binary vectors PBI121.X, which has the -glucuronidase (GUS) marker gene, or Bin 19, which has the neomycin phosphotransferase II (NPT II) gene. Regenerants were produced on media containing MS salts, 20 gl-1 sucrose, 7 gl-1 agar, 100 mgl-1 inositol, 0.5 mgl-1 nicotinic acid, 0.5 mgl-1 pyridoxine-HCl, 0.1 mgl-1 thiamine, and either 0.1 mgl-1 IBA and 2 mgl-1 BAP for leaf discs, or 0.2 mgl-1 BAP and 0.2 mgl-1 2,4-D for stem segments. Kanamycin sulphate, which was used as a selective agent for the NPT II gene, inhibited organogenesis at 50 mgl-1 and was therefore unsuitable for use as a selectable marker gene in Rubus. All regenerants were assayed utilizing the fluorogenic assay procedure to determine if the GUS gene had been transferred into the material and could therefore cleave the substrate 4-methyl-umbelliferyl--D-glucuronide. Seven GUS-positive plantlets were obtained which confirmed that this marker gene had been transferred into Rubus. A dot blot assay was carried out on GUS-positive plant material to establish if the NPT II gene had also been transferred to the plant material.  相似文献   

10.
11.
Five new binary vectors have been constructed which have the following features: (1) different plant selectable markers including neomycin phosphotransferase (nptII), hygromycin phosphotransferase (hpt), dihydrofolate reductase (dhfr), phosphinothricin acetyl transferase (bar), and bleomycin resistance (ble); (2) selectable markers are located near the T-DNA left border and; (3) selectable marker and -glucuronidase (uidA) reporter genes are divergently organized for efficient expression, and can easily be removed or replaced as needed.  相似文献   

12.
We describe here a set of binary vectors suitable forAgrobacterium-mediated gene transfer and specially designed for studying plant promoters. These vectors are based on the use of thegus reporter gene, contain multiple unique restriction sites upstream of thegus gene, and minimal promoters for testing the effect of enhancers or activator elements. In addition, an intron-containinggus (uidA) gene was introduced into one of these vectors in order to examine reporter gene activity in tissues whereAgrobacterium contamination may be a problem or in transient expression assays.  相似文献   

13.
Arabitol dehydrogenase as a selectable marker for rice   总被引:3,自引:0,他引:3  
Arabitol dehydrogenase has been adapted for use as a plant selectable marker. Arabitol is a five-carbon sugar alcohol that can be used by E. coli strain C, but not by the laboratory K12 strains. The enzyme converts the non-plant-metabolizable sugar arabitol into xylulose, which is metabolized by plant cells. Rice was transformed with a plant-expression-optimized synthetic gene using Biolistic-mediated transformation. Selection on 2.75% arabitol and 0.25% sucrose yielded a transformation efficiency (9.3%) equal to that obtained with hygromycin (9.2%). Molecular analyses showed that the atlD gene was integrated into the rice genome of selected plants and was inherited in a Mendelian manner. This study indicates that arabitol could serve as an effective means of plant selection.  相似文献   

14.
We report here a new selectable marker for tobacco immature pollen transformation based on the expression of dihydrofolate reductase (dhfr) gene which confers resistance to methotrexate (Mtx). Two immature pollen transformation approaches, i.e., male germ line transformation and particle bombardment of embryogenic mid-bicellular pollen have been used for the production of stable transgenic tobacco plants. In the first method, two methotrexate-resistant plants were selected from a total of 7161 seeds recovered after transformation experiments. In the second method, four methotrexate-resistant plants were obtained from 29 bombardments using 3.7×105 pollen grains per bombardment. Southern analysis confirmed the transgenic nature of T0 and T1 candidate transgenic plants, and a genetic analysis showed that the transgenes are transmitted to subsequent generations.  相似文献   

15.
Summary We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.Abbreviations bar bialaphos resistance gene - CIM callus-inducing medium - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GM germination medium - HPT hygromycin phosphotransferase - MS Murashige and Skoog salts - NPTII neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin - SIM shoot-inducing medium  相似文献   

16.
Transformation of plants is a popular tool for modifying various desirable traits. Marker genes, like those encoding for bacterial β-glucuronidase (GUS), firefly luciferase (LUC) or jellyfish green fluorescent protein (GFP) have been shown to be very useful for establishing of efficient transformation protocols. Due to favourable properties such as no need of exogenous substrates and easy visualization, GFP has been found to be superior in to other markers in many cases. However, the use of GFP fluorescence is associated with some obstacles, mostly related to the diminishing of green fluorescence in older tissues, variation in fluorescence levels among different tissues and organs, and occasional interference with other fluorescing compounds in plants. This paper briefly summarizes basic GFP properties and applications, and describes in more detail the contribution of GFP to the establishment, evaluation and improvement of transformation procedures for plants. Moreover, features and possible obstacles associated with monitoring GFP fluorescence are discussed.  相似文献   

17.
We report on a novel chimeric gene that confers kanamycin resistance on tobacco plastids. The kan gene from the bacterial transposon Tn5, encoding neomycin phosphotransferase (NPTII), was placed under control of plastid expression signals and cloned between rbcL and ORF512 plastid gene sequences to target the insertion of the chimeric gene into the plastid genome. Transforming plasmid pTNH32 DNA was introduced into tobacco leaves by the biolistic procedure, and plastid transformants were selected by their resistance to 50 g/ml of kanamycin monosulfate. The regenerated plants uniformly transmitted the transplastome to the maternal progeny. Resistant clones resulting from incorporation of the chimeric gene into the nuclear genome were also obtained. However, most of these could be eliminated by screening for resistance to high levels of kanamycin (500 g/ml). Incorporation of kan into the plastid genome led to its amplification to a high copy number, about 10000 per leaf cell, and accumulation of NPTII to about 1% of total cellular protein.  相似文献   

18.
In this project we have analysed the use of an intron-containing neomycin phosphotransferase II - nptII - gene. The advantage of this construct is that only eukaryotic organisms will be able to process this gene. Accordingly, the theoretical risk of horizontal gene flow of antibiotic resistance genes from transgenic plants to enteric bacteria is eliminated. The ST-LS1 intron IV2 from potato was inserted into the coding region of nptII. Transformation of Solanum tuberosum (potato) and Nicotiana tabacum (tobacco) with constructs containing the intron nptII showed similar transformation frequencies to transformation with constructs containing the normal nptII. Analysis of total DNA and RNA confirmed that the intron-containing nptII gene was present in the plants and that the mRNA was processed correctly.  相似文献   

19.
Acetolactate synthase (ALS) is a target enzyme for many herbicides, including sulfonylurea and imidazolinone. We investigated the usefulness of a mutated ALS gene of rice, which had double point mutations and encoded an herbicide-resistant form of the enzyme, as a selectable marker for wheat transformation. After the genomic DNA fragment from rice containing the mutated ALS gene was introduced into immature embryos by means of particle bombardment, transgenic plants were efficiently selected with the herbicide bispyribac sodium (BS). Southern blot analysis confirmed that transgenic plants had one to more than ten copies of the transgene in their chromosomes. Adjustment of the BS concentration combined with repeated selection effectively prevented nontransgenic plants from escaping herbicide selection. Measurement of ALS activity indicated that transgenic plants produced an herbicide-resistant form of ALS and therefore had acquired the resistance to BS. This report is the first to describe a selection system for wheat transformation that uses a selectable marker gene of plant origin.  相似文献   

20.
 Streptothricins are known as antimicrobial agents produced by Streptomyces spp. Bacterial resistance to streptothricin is mediated by specific enzymes exhibiting an acetyltransferase activity which renders the drug non-toxic for bacteria. The nucleotide sequence of several streptothricin resistance genes from bacteria have been described. Certain cells of eukaryotic parasites (such as Ustilago maydis or Leishmania spp.) are sensitive to streptothricin and the introduction of the bacterial resistance gene sat2 renders them resistant. We show that numerous species of plants are sensitive to low concentrations of streptothricin. Moreover, introduction of the bacterial resistance gene sat3 under the control of the 35S cauliflower mosaic virus promoter protects these cells from the toxic action of streptothricin. Therefore, sat3-mediated streptothricin resistance appears to be a promising selective marker for genetic manipulation of plant cells. Received: 6 November 1996 / Revision received: 9 January 1997 / Accepted: 22 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号