首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five bands of lactate dehydrogenase (LDH) isoenzymes were seen by polyacrylamide gel electrophoresis in gastrocnemius muscle of the turtle (Kachuga smithi). The major band was of M2H2 type and was partially purified by gel filtration and affinity chromatography. The specific activity of the enzyme was 2.6 units/mg protein. The half-life of the enzyme at 4 degrees C, was about 7 days. The optimum temperature for enzyme activity was 30 degrees C and the enzyme was irreversibly inactivated at 40 degrees C. The optimum pH for the forward reaction (pyruvate to lactate) was 5.5, while for reverse reaction it was between 8.0 to 9.5. The apparent Km values for pyruvate, NADH, lactate and NAD+ were 0.20, 0.013, 25 and 0.333 mM, respectively. Oxalate was found to be the inhibitor of LDH with Ki of about 4.2 mM.  相似文献   

2.
Sialate pyruvate-lyases, also known as sialate aldolases (EC 4.1.3.3), reversibly catalyse the cleavage of free N-acetylneuraminic acids to form pyruvate and N-acetylmannosamine. These enzymes are widely distributed and are present in numerous pro- and eukaryotic cells, in which they are localized only in the cytosol. They play an important role in the regulation of sialic acid metabolism by controlling the intracellular concentration of sialic acids of biosynthetic or exogenous origin, thus preventing the accumulation of toxic levels of this sugar. Application of an original colorimetric micromethod for N-acetylmannosamine determination, as well as the use of [4,5,6,7,8,9-14C]N-acetylneuraminic acid, led us to evidence a cytosolic neuraminate aldolase activity in human red blood cells (RBCs) and then to define the main characteristics of this enzyme: Michaelis-Menten type, K(m:) 1.4 +/- 0.05 mM, optimal pH: 7.6 +/- 0.2, optimal temperature: 70 +/- 2 degrees C, inhibition by heavy metals: Ag(+) and Hg(++). These enzyme parameters are close to those of the bacterial and mammalian aldolases described up to now. At the moment, the presence of sialate pyruvate-lyase in the cytosol of red blood cells remains an enigma.  相似文献   

3.
An immobilized bienzyme system for assay of sialic acid   总被引:1,自引:0,他引:1  
Sialic acid has been assayed enzymatically by an immobilized two-enzyme system. The method includes cleavage of sialic acid to pyruvic acid by N-acetylneuraminic acid (NANA) aldolase and reduction of pyruvic acid by lactate dehydrogenase in the presence of NADH, which is followed photometrically at 349 nm. For the membrane preparation 5 units of lactate dehydrogenase and 1 unit of NANA-aldolase were used. The pH optimum of the reaction using potassium phosphate buffer was 7.0. This two-enzyme membrane remains 100% active for several weeks at 4 degrees C in the assay buffer and remains stable after performing experiments at 45 degrees C.  相似文献   

4.
An Escherichia coli strain expressing three recombinant enzymes, i.e., cytidine 5'-monophosphate (CMP) kinase, sialic acid aldolase and cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase, was utilized as a biocatalyst for the production of CMP-NeuAc. Both recombinant E. coli extract and whole cells catalyzed the production of CMP-NeuAc from CMP (20 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetylphosphate (60 mM), resulting in 90% conversion yield based on initial CMP concentration used. It was confirmed that endogenous acetate kinase can catalyze not only the ATP regeneration in the conversion of CMP to CDP but also the conversion of CDP to CTP. On the other hand, endogenous pyruvate kinase and polyphosphate kinase could not regenerate ATP efficiently. The addition of exogenous acetate kinase to the reaction mixture containing the cell extract increased the conversion rate of CMP to CMP-NeuAc by about 1.5-fold, but the addition of exogenous inorganic pyrophosphatase had no influence on the reaction. This E. coli strain could also be employed as an enzyme source for in situ regeneration of CMP-NeuAc in a sialyltransferase catalyzed reaction. About 90% conversion yield of alpha2,3-sialyl-N-acetyllactosamine was obtained from N-acetyllactosamine (20 mM), CMP (2 mM), N-acetylmannosamine (40 mM), pyruvate (60 mM), ATP (1 mM), and acetyl phosphate (80 mM) using the recombinant E. coli extract and alpha2,3-sialyltransferase.  相似文献   

5.
Tauropine dehydrogenase (tauropine:NAD oxidoreductase) was purified from the shell adductor muscle of the ormer, Haliotis lamellosa. The enzyme was found to utilize stoichiometrically NADH as co-enzyme and pyruvate and taurine as substrates producing tauropine [rhodoic acid; N-(D-1-carboxyethyl)-taurine]. The enzyme was purified to a specific activity of 463 units/mg protein using a combination of ammonium sulphate fractionation, ion-exchange and affinity chromatography. The relative molecular mass was 38,000 +/- 1000 when assessed by gel filtration on Ultrogel AcA 54 and 42,000 +/- 150 by electrophoresis on 5-10% polyacrylamide gels in the presence of 1% sodium dodecyl sulphate; the data suggest a monomeric structure. Tauropine and pyruvate were found to be the preferred substrates. Among the amino acids tested for activity with the enzyme, only alanine is used as an alternative substrate, but with a rate less than 6% of the enzyme activity with taurine. Of the oxo acids tested, 2-oxobutyrate and 2-oxovalerate were also found to be substrates. Apparent Km values for the substrates NADH, pyruvate and taurine are 0.022 +/- 0.003 mM, 0.64 +/- 0.07 mM and 64.7 +/- 5.4 mM, respectively, at pH 7.0 and for the products, NAD+ and tauropine, are 0.29 +/- 0.01 mM and 9.04 +/- 1.27 mM, respectively, at pH 8.3. Apparent Km values for both pyruvate and taurine decrease with increasing co-substrate (taurine or pyruvate) concentration. NAD+ and tauropine were found to be product inhibitors of the forward reaction. NAD+ was a competitive inhibitor of NADH, whereas tauropine gave a mixed type of inhibition with respect to pyruvate and taurine. Succinate was found to inhibit non-competitively with respect to taurine and pyruvate with an apparent Ki value in the physiological range of this anaerobic end product. The inhibition by L-lactate, not an end product in the ormer, was competitive with respect to pyruvate. The physiological role or tauropine dehydrogenase during anaerobiosis is discussed.  相似文献   

6.
Clostridium perfringens cells were cultivated on a large scale using an automatic system. 2) N-Acetylneuraminate lyase, which is a cytosolic enzyme, was liberated from the bacteria by cell lysis using lysozyme in hypotonic solution. The enzyme was purified 770-fold by precepitation with ammonium sulfate, filtration on Sephadex A-50 and final preparative electrophoresis in a 7.5% polyacrylamide gel. Yield: 12 mg from 1 kg wet cell paste; specific activity: 167 nkat/mg protein. 3) The enzyme preparation appeared homogeneous in analytical disc electrophoresis, in gel electrophroesis in 0.1% sodium dodecylsulfate or 8m urea and in immunoelectrophoresis. Contaminating enzyme activities were not detected. 4) The isoelectric point of pH 4.7 was found for the enzyme. At 278 nm a molar extinction coefficient of 6.4 x 10(4)M-1 Xcm-1 was determined. The enzyme exhibited a Km value for N-acetylneuraminic acid of 2.8mM at its pH optimum of pH 7.2. The pH dependence of the Km value gives evidence that an ionizing guoup in the active center of the enzyme with a pKe value of 6.4 may be involved in the catalytic reaction. Pyruvate inhibited the cleavage reaction of N-acetylneuraminic acid competitively; Ki = 2.9mM. 5) An average molecular weight of 99200 was determined for the native enzyme using different methods. After denaturation in sokium dodecylsulfate or urea, a mean molecular weight of only 50000 could be demonstrated, indicating the existence of two enzyme subunits. The lyase molecule was shown by electron microscopy, using a negative staining technique, to consist of two hemispherical parts. 6) Two active sites per native enzyme molecule, probably corresponding to one active site per subunit, were found by incubation of the enzyme with radioactive pyruvate followed by borohydride reduction. The results obtained from chemical modification of the lyase with 5-diazonium-1H-tetrazole and iodocaetamide under various conditionsare interpreted as evidence for the presence of two reactive histidine residues in the enzyme molecule. It is probable that one residue per subunit forms the nucleophilic group participating in enzyme catalysis. A model suggesting the mechanism of reversible cleavage of N-acylneuraminic acids by the lyase is presented.  相似文献   

7.
A new enzyme, N-acyl-D-mannosamine dehydrogenase, was purified to apparent homogeneity from a cell-free extract of Flavobacterium sp. 141-8 and some of its properties were investigated. The enzyme showed optimum activity at pH 8.0-9.5. N-Acetyl- and N-glycolyl-D-mannosamine were oxidized but other commonly existing sugars, such as N-acetylglucosamine, N-acetylgalactosamine, amino sugars, neutral hexoses, and pentoses, were not oxidized. NAD+ was specifically utilized as an effective hydrogen acceptor. The apparent Km values for N-acetyl- and N-glycolyl-D-mannosamine, and NAD+ were 1.0, 13.3, and 0.41 mM, respectively. The stoichiometry data showed that 1 mol each of N-acetyl-D-mannosamine and NAD+ were converted to 1 mol each of N-acetyl-D-mannosaminic acid and NADH, respectively. Although the formation of lactone was detected in the enzyme reaction mixture, the reverse reaction of the enzyme, the reduction of N-acetyl-D-mannosamino-lactone, was not observed. The enzyme activity was strongly inhibited by Hg2+ and SDS, but metal-chelating reagents and sulfhydryl-group-blocking reagents had almost no effect. The molecular weight of the enzyme was estimated to be 120,000 on gel filtration and 29,000 on SDS-polyacrylamide gel electrophoresis. Its isoelectric point was at pH 4.8. On trial application of the enzyme, it was indicated that N-acetylneuraminic acid can be determined quantitatively with the combined enzyme system involving the new enzyme and N-acetylneuraminic acid aldolase.  相似文献   

8.
1. Octopine dehydrogenase and lactate dehydrogenase were purified 190-fold and 10-fold respectively from the adductor muscle of the marine bivalve Cardium edule by gel filtration on Sephadex G-100 and chromatography on DEAE-Sephadex A-50. 2. Lactate dehydrogenase was capable to convert D- and L-lactate, had a molecular weight of about 70 000 and 280 000 daltons, exhibits no distinct pH optimum and was not inhibited by lactate. The enzyme showed apparent Km values of 0.16 mM for pyruvate and 16 mM and 48 mM for D- and L-lactate respectively. 3. In comparison to the purified enzymes from other species, octopine dehydrogenase from Cardium edule showed similar biochemical properties : pH optima of 6.8 and 8.7 respectively, Km values of 0.9 mM (for pyruvate) and 2.0 mM (for arginine), a molecular weight of 37 000 daltons and inhibition by octopine. Electrophoretic studies on standard polyacrylamide gels showed five isoenzymes. 4. The biochemical properties of both dehydrogenases are compared to the conditions in vivo of these animals and the biological role of the octopine dehydrogenase is discussed.  相似文献   

9.
T. Betsche  K. Bosbach  B. Gerhardt 《Planta》1979,146(5):567-574
By ammonium sulfate fractionation and gel filtration an enzyme preparation which catalyzed NAD+-dependent L-lactate oxidation (10-4 kat kg-1 protein), as well as NADH-dependent pyruvate reduction (10-3 kat kg-1 protein), was obtained from leaves of Capsella bursa-pastoris. This lactate dehydrogenase activity was not due to an unspecific activity of either glycolate oxidase, glycolate dehydrogenase, hydroxypyruvate reductase, alcohol dehydrogenase, or a malate oxidizing enzyme. These enzymes could be separated from the protein displaying lactate dehydrogenase activity by gel filtration and electrophoresis and distinguished from it by their known properties. The enzyme under consideration does not oxidize D-lactate, and reduces pyruvate to L-lactate (the configuration of which was determined using highly specific animal L-lactate dehydrogenase). Based on these results the studied Capsella leaf enzyme is classified as L-lactate dehydrogenase (EC 1.1.1.27). It has a Km value of 0.25 mmol l-1 (pH 7.0, 0.3 mmol l-1 NADH) for pyruvate and of 13 mmol l-1 (pH 7.8, 3 mmol l-1 NAD+) for L-lactate. Lactate dehydrogenase activity was also detected in the leaves of several other plants.Abbreviation FMN flavin adenine mononucleotide  相似文献   

10.
Cell-free extracts of Rhizobium meliloti contain a soluble lactate dehydrogenase (LDH-EC 1.1.1.27.). This was purified 250-fold by ammonium sulfate precipitation and filtration on different Sephadex gels. This enzyme catalyses the reduction of pyruvate to lactate in the presence of NADH and for the first time we report its ability to reduce indole-3-pyruvic acid (IPyA) to indole-3-lactic acid (ILA). Optimal conditions for activity and Km values for both substrates were determined. In the presence of NAD the reverse reaction could be demonstrated with the aliphatic substrate (lactate), but under our conditions it was not possible to achieve the oxidation of ILA to IPyA. The role of this LDH in the indole metabolism is discussed and a general reaction scheme is suggested.  相似文献   

11.
15-Hydroxyprostaglandin dehydrogenase was isolated from human term placenta up to a final purification of 380-fold. A spec. act. of 2000 mU/mg of protein was reached. The preparation was not homogeneous as judged by analytical disc electrophoresis. The enzyme could be stored in the presence of 50% glycerol and 10mM 2-mercaptoethanol without any loss of activity for at least one year. A distinct single protein band stained after discontinuous polyacrylamide gel electrophoresis was shown by enzymatic activity staining to correspond to 15-hydroxyprostaglandin dehydrogenase activity. Thus no evidence for the exitstence of isoenzymes was obtained. The protein in the final preparation steps showed neither alcohol dehydrogenase, NAD reductase, nor NADH oxidase activity, nor enzymatic conversion of prostaglandin or 15-oxoprostaglandin in the absence of NAD and NADH. No spontaneous reactions between NAD and prostaglandin or NADH and 15-oxoprostaglandin were detectable in the absence of the enzyme. Ethanol and glycerol slightly inhibited the reaction. Various buffers (Tris/HC1, potassium phosphate, HEPES, and triethanolamine) and salts (ammonium chloride, ammonium sulfate, potassium chloride, and sodium chloride) had different effects on the reaction rate. The pH profile of the reaction shows a plateau between pH 7.0 and 7.8 and a steep maximum at pH 9.5. A linear Arrhenius plot was obtained for the temperature dependence of the reaction from 20 to 37 degrees C. The molar activation enthalpy of the reaction was calculated to be 13.1 kcal/mole. The molecular weight of 15-hydroxyprostaglandin dehydrogenase was estimated to be 32000 -/+ 3000 by gel filtration on Sephadex G-150 in the presence of 10mM mercaptoethanol.  相似文献   

12.
A new reliable method to assay the activity of cytidine monophosphate sialic acid (CMP-Sia) synthetase (CSS) has been developed. The activation of sialic acids (Sia) to CMP-Sia is a prerequisite for the de novo synthesis of sialoglycoconjugates. In vertebrates, CSS has been cloned from human, mouse, and rainbow trout, and the crystal structure has been resolved for the mouse enzyme. The mouse and rainbow trout enzyme have been compared with respect to substrate specificity, demonstrating that the mouse enzyme exhibits a pronounced specificity for N-acetylneuraminic acid (Neu5Ac), while the rainbow trout CSS is equally active with either of three Sia species, Neu5Ac, N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (KDN). However, molecular details that explain the pronounced substrate specificities are unknown. Understanding the catalytic mechanisms of these enzymes is of major importance, since CSSs play crucial roles in cellular sialylation patterns and thus are potential drug targets in a number of pathophysiological situations. The availability of the cDNAs and the obtained structural data enable rational approaches; however, these efforts are limited by the lack of a reliable high-throughput assay system. Here we describe a new assay system that allows product quantification in a reduced nicotinamide adenine dinucleotide (NADH)-dependent color reaction. The activation reaction catalyzed by CSS, CTP+Sia-->CMP-Sia+pyrophosphate, was evaluated by a consumption of Sia, which corresponds to that of NADH on the following two successive reactions: (i) Sia-->pyruvate+ManNAc (or Man), catalyzed by a sialic acid lyase (SAL), and (ii) pyruvate+NADH-->lactate+oxidized nicotinamide adenine dinucleotide (NAD+), catalyzed by a lactate dehydrogenase (LDH). Consumption of NADH can be photometrically monitored on a microtiter plate reader for a number of test samples at the same time. Furthermore, based on the quantification of CSS used in the SAL/LDH assay, relative activities toward Sia derivatives have been obtained. The preference of mouse CSS toward Neu5Ac and the ability of the rainbow trout enzyme to activate both KDN and Neu5Ac were confirmed. Thus, this simple and time-saving method is suitable for a systematic comparison of enzyme activity of structurally mutated enzymes based on the relative specific activity.  相似文献   

13.
Human skin fibroblasts incubated for 72 h in medium containing 10 mM N-acetyl-D-mannosamine accumulate material that yields a chromophore in the presence of thiobarbituric acid. This material was tentatively identified as free (unbound) sialic acid due to its reactivity with thiobarbituric acid prior to acid hydrolysis, its solubility in 10% trichloroacetic acid, its chromatographic properties on an anion-exchange column and its enzymatic susceptibility to acylneuraminate pyruvate-lyase. Mass spectrometry analysis established that the accumulated material was, in fact, N-acetylneuraminic acid. Loading studies demonstrated a linear relationship between the amount of N-acetylmannosamine in the medium and the level of sialic acid accumulating within the cells. Cells grown in the absence of N-acetylmannosamine contained an average of 5 nmol free sialic acid/mg protein, while cells cultured for 72 h in 20 mM amounts of this material contained an average of 156.3 nmol free sialic acid/mg protein. When the cells were removed from the N-acetylmannosamine-enriched medium and incubated in regular medium, more than 80% of the accumulated, intracellular sialic acid disappeared within the first 96 h. It was concluded from these data that normal fibroblasts cultured in medium enriched with N-acetylmannosamine store large amounts of N-acetylneuraminic acid and can thus serve as an excellent model for the study of both normal and abnormal sialic acid metabolism, transport, storage and/or metabolic (feedback) regulation in human tissue.  相似文献   

14.
Lactate dehydrogenase and NANA-lyase were immobilized in an artificial gelantine membrane. This bienzyme system was used for continuous assay of neuraminidase activity. The K'(m) of the active membrane for lactate dehydrogenase and NANA-lyase using NADH, pyruvic acid, and N-acetylneuraminic acid as substrates were found to be 0.25mM, 0.75mM, and 2.1mM, respectively. The K(m) of soluble neuraminidase using sialyllactose as substrate was found to be 0.13 mM. The pH optimum for neuraminidase activity was 6.0. At 45 degrees C the reaction rate was higher, and no denaturation phenomena of the immobolized enzymes have been observed. This bienzyme membrane was stable for several weeks stored in the reaction buffer at 4 degrees C.  相似文献   

15.
NAD(P)H dehydrogenase was purified approximately 480-fold from Saccharomyces cerevisiae with 6.5% activity yield. The enzyme was homogeneous on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 40,000–44,000 by gel filtration on Sephadex G-150 column chromatography and SDS-polyacrylamide gel electrophoresis. The Km values for NADPH and NADH were 7.3 μM and 0.1 mM, respectively. The activity of the enzyme increased approximately 4-fold with Cu2+. FAD, FMN and cytochrome c were not effective as electron acceptors, although Fe(CN)63− was slightly effective. NADH generated by the reaction of lactaldehyde dehydrogenase in the glycolytic methylglyoxal pathway will be reoxidized by NAD(P)H dehydrogenase. NAD(P)H dehydrogenase thus may contribute to the reduction/oxidation system in the glycolytic methylglyoxal pathway to maintain the flux of methylglyoxal to lactic acid via lactaldehyde.  相似文献   

16.
Alanine dehydrogenase was purified to homogeneity from a cell-free extract of Streptomyces fradiae, which produces tylosin. The enzyme was purified 1180-fold to give a 21% yield, using a combination of hydrophobic chromatography and ion-exchange fast protein liquid chromatography. The relative molecular mass of the native enzyme was determined to be 210,000 or 205,000 by equilibrium ultracentrifugation or gel filtration, respectively. The enzyme is composed of four subunits, each of Mr 51,000. Using analytical isoelectric focusing the isoelectric point of alanine dehydrogenase was found to be 6.1. The Km were 10.0 mM for L-alanine and 0.18 mM for NAD+. Km values for reductive amination were 0.23 mM for pyruvate, 11.6 mM for NH4+ and 0.05 mM for NADH. Oxidative deamination of L-alanine proceeds through a sequential-ordered binary-ternary mechanism in which NAD+ binds first to the enzyme, followed by alanine, and products are released in the order ammonia, pyruvate and NADH.  相似文献   

17.
L-Fucose dehydrogenase [EC 1.1.1.122] was isolated from a rabbit liver extract and purified about 390-fold with a yield of approximately 13%. The purification procedures included treatment with protamine, ammonium sulfate fractionation, treatment with acid, DE-32 celluose colum chromatography, gel filtration on Sephadex G-100, preparative polyacrylamide gel electrophoresis, and affinity chromatography on 5' AMP-Sepharose 4B. The last procedure, affinity chromatography on 5' AMP-Sephadex 4B, was useful for the removal of other dehydrogenases. The eznyme which was homogeneous, as shown by polyacrylamide gel electrophoresis, had a molecular weight of about 92,000. The optimum pH was at 10.0 and isoelectric point at 5.2. The enzyme accepted both L-fucose and D-arabinose as substrate, but was specific for NAD+ as coenzyme. Km values were 0.15 mM, 1.4 mM, and 0.7 mM for L-fucose, D-arabinose, and NAD+, respectively. A single enzyme catalyzed the oxidation of L-fucose and D-arabinose, which had the same configurations of hydroxyl groups from C-2 to C-4. The reaction products obtained with L-fucose as substrate were L-fucono-lactone and L-fuconic acid. The L-fucono-lactone was an immediate product of oxidation and was hydrolyzed to L-fuconic acid spontaneously. This reaction was irreversible. Therefore, it is likely that L-fucose dehydrogenase is involved in the initial step of the catabolic pathway of L-fucose in rabbit liver.  相似文献   

18.
Dipeptidyl aminopeptidase IV (EC 3.4.14.-) was solubilized from a particulate membrane fraction of rat intestinal mucosa with Triton X-100. The solubilized enzyme was purified to homogeneity following ammonium sulfate fractionation, chromatography on DEAE-Sepharose and hydroxyapatite, gel filtration and preparative polyacrylamide gel electrophoresis. The final enzyme preparation had a specific activity of 55 units/mg protein representing a 1373 fold purification over the starting material. Purity was judged by polyacrylamide gel electrophoresis and double immunodiffusion. The molecular weight of the native undenatured enzyme was estimated to be 230000 by gel filtration and polyacrylamide gel electrophoresis. Electrophoresis under denaturing conditions (sodium dodecyl sulfate) indicated that the protein consists of two identical 98 kDa subunits. Dipeptidyl aminopeptidase IV is a glycoprotein containing approx. 8% carbohydrate by weight. A detailed analysis of the individual sugar components demonstrated that fucose, galactose, glucose, mannose, sialic acid and hexosamine sugars were present. The nature of the constituent asparagine linked oligosaccharide side chains was further examined following cleavage from the peptide backbone by hydrazinolysis. Following high voltage paper electrophoresis approx. 80% of the isolated oligosaccharide was found with the neutral fraction while the remaining 20% consisted of a single acidic component. Gel filtration of the neutral oligosaccharide fraction indicated that it contains approx. 19 sugar residues.  相似文献   

19.
Properties of glutamate dehydrogenase purified from Bacteroides fragilis   总被引:2,自引:0,他引:2  
The dual pyridine nucleotide-specific glutamate dehydrogenase [EC 1.4.1.3] was purified 37-fold from Bacteroides fragilis by ammonium sulfate fractionation, DEAE-Sephadex A-25 chromatography twice, and gel filtration on Sephacryl S-300. The enzyme had a molecular weight of approximately 300,000, and polymeric forms (molecular weights of 590,000 and 920,000) were observed in small amounts on polyacrylamide gel disc electrophoresis. The molecular weight of the subunit was 48,000. The isoelectric point of the enzyme was pH 5.1. This glutamate dehydrogenase utilized NAD(P)H and NAD(P)+ as coenzymes and showed maximal activities at pH 8.0 and 7.4 for the amination with NADPH and with NADH, respectively, and at pH 9.5 and 9.0 for the deamination with NADP+ and NAD+, respectively. The amination activity with NADPH was about 5-fold higher than that with NADH. The Lineweaver-Burk plot for ammonia showed two straight lines in the NADPH-dependent reactions. The values of Km for substrates were: 1.7 and 5.1 mM for ammonium chloride, 0.14 mM for 2-oxoglutarate, 0.013 mM for NADPH, 2.4 mM for L-glutamate, and 0.019 mM for NADP+ in NADP-linked reactions, and 4.9 mM for ammonium chloride, 7.1 mM for 2-oxoglutarate, 0.2 mM for NADH, 7.3 mM for L-glutamate, and 3.0 mM for NAD+ in NAD-linked reactions. 2-Oxoglutarate and L-glutamate caused substrate inhibition in the NADPH- and NADP+-dependent reactions, respectively, to some extent. NAD+- and NADH-dependent activities were inhibited by 50% by 0.1 M NaCl. Adenine nucleotides and dicarboxylic acids did not show remarkable effects on the enzyme activities.  相似文献   

20.
Alanine dehydrogenase [L-alanine:NAD+ oxidoreductase (deaminating), EC 1.4.1.4.] catalyses the reversible oxidative deamination of L-alanine to pyruvate and, in the anaerobic bacterium Bilophila wadsworthia RZATAU, it is involved in the degradation of taurine (2-aminoethanesulfonate). The enzyme regenerates the amino-group acceptor pyruvate, which is consumed during the transamination of taurine and liberates ammonia, which is one of the degradation end products. Alanine dehydrogenase seems to be induced during growth with taurine. The enzyme was purified about 24-fold to apparent homogeneity in a three-step purification. SDS-PAGE revealed a single protein band with a molecular mass of 42 kDa. The apparent molecular mass of the native enzyme was 273 kDa, as determined by gel filtration chromatography, suggesting a homo-hexameric structure. The N-terminal amino acid sequence was determined. The pH optimum was pH 9.0 for reductive amination of pyruvate and pH 9.0-11.5 for oxidative deamination of alanine. The apparent Km values for alanine, NAD+, pyruvate, ammonia and NADH were 1.6, 0.15, 1.1, 31 and 0.04 mM, respectively. The alanine dehydrogenase gene was sequenced. The deduced amino acid sequence corresponded to a size of 39.9 kDa and was very similar to that of the alanine dehydrogenase from Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号