首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin D nuclear receptor mediates the genomic actions of the active form of vitamin D, 1,25(OH)2D3. This hormone is involved in calcium and phosphate metabolism and cell differentiation. Compared to other nuclear receptors, VDR presents a large insertion region at the N-terminal part of the ligand binding domain between helices H1 and H3, encoded by an additional exon. This region is poorly conserved in VDR in different species and is not well ordered as observed by secondary structure prediction. We engineered a VDR ligand binding domain mutant by removing this insertion region. Here we report its biochemical and biophysical characterization. The mutant protein exhibits the same ligand binding, dimerization with retinoid X receptor and transactivation properties as the wild-type VDR, suggesting that the insertion region does not affect these main functions. Solution studies by small angle X-ray scattering shows that the conformation in solution of the VDR mutant is similar to that observed in the crystal and that the insertion region in the VDR wild-type is not well ordered.  相似文献   

2.
Vitamin D receptor (VDR) plays a crucial role in many cellular processes including calcium and phosphate homeostasis. Previous purification methods from prokaryotic and eukaryotic expression systems were challenged by low protein solubility accompanied by multi purification steps resulting in poor protein recovery. The full-length VDR and its ligand binding domain (LBD) were mostly (>90%) insoluble even when expressed at low temperatures in the bacterial system. We describe a one-step procedure that results in the purification of rat VDR and LBD proteins in high-yield from Escherichia coli inclusion bodies. The heterologously expressed protein constructs retained full function as demonstrated by ligand binding and DNA binding assays. Furthermore, we describe an efficient strategy for labeling these proteins with (2)H, (13)C, and (15)N for structural and functional studies by nuclear magnetic resonance (NMR) spectroscopy. This efficient production system will facilitate future studies on the mechanism of vitamin D action including characterization of the large number of synthetic vitamin D analogs that have been developed.  相似文献   

3.
Regulation of nuclear receptor (NR) activity is driven by alterations in the conformational dynamics of the receptor upon ligand binding. Previously, we demonstrated that hydrogen/deuterium exchange (HDX) can be applied to determine novel mechanism of action of PPARγ ligands and in predicting tissue specificity of selective estrogen receptor modulators. Here, we applied HDX to probe the conformational dynamics of the ligand binding domain (LBD) of the vitamin D receptor (VDR) upon binding its natural ligand 1α,25-dihydroxyvitamin D3 (1,25D3), and two analogs, alfacalcidol and ED-71. Comparison of HDX profiles from ligands in complex with the LBD with full-length receptor bound to its cognate receptor retinoid X receptor (RXR) revealed unique receptor dynamics that could not be inferred from static crystal structures. These results demonstrate that ligands modulate the dynamics of the heterodimer interface as well as provide insight into the role of AF-2 dynamics in the action of VDR partial agonists.  相似文献   

4.
5.
A three-dimensional model for residues 142-427 of the ligand binding domain (LBD) of the human nuclear receptor for 1alpha, 25-dihydroxy-vitamin D(3) [VDR] has been generated based on the X-ray crystallographic atomic coordinates of the LBD of the rat alpha1 thyroid receptor (TR). The VDR LBD model is an elongated globular shape comprised of an antiparallel alpha-helical triple sandwich topology, made up of 12 alpha-helical elements linked by short loop structures; collectively these structural features are similar to the characteristic secondary and tertiary structures for six nuclear receptors with known X-ray structures. The model has been used to describe the interaction of the conformationally flexible natural hormone, 1alpha,25-dihydroxy-vitamin D(3) [1alpha, 25(OH)(2)D(3)], and a number of related analogs with the VDR LBD. The optimal orientation of the 1alpha,25(OH)(2)D(3) in the LBD is with its A-ring directed towards the interior and its flexible side chain pointing towards and interacting with helix-12, site of the activation function-2 domain (AF-2) of the VDR. Mapping of four natural and one experimental point mutations of the VDR LBD, which result in ligand-related receptor dysfunction, indicates the close proximity of these amino acids to the bound ligand.  相似文献   

6.
7.
8.
Lithocholic acid (2) was identified as the second endogenous ligand of vitamin D receptor (VDR), though its binding affinity to VDR and its vitamin D activity are very weak compared to those of the active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 (1). 3-Acylated lithocholic acids were reported to be slightly more potent than lithocholic acid (2) as VDR agonists. Here, aiming to develop more potent lithocholic acid derivatives, we synthesized several derivatives bearing a 3-sulfonate/carbonate or 3-amino/amide substituent, and examined their differentiation-inducing activity toward human promyelocytic leukemia HL-60 cells. Introduction of a nitrogen atom at the 3-position of lithocholic acid (2) decreased the activity, but compound 6 bearing a 3-methylsulfonate group showed more potent activity than lithocholic acid (2) or its acylated derivatives. The binding of 6 to VDR was confirmed by competitive binding assay and X-ray crystallographic analysis of the complex of VDR ligand-binding domain (LBD) with 6.  相似文献   

9.
10.
More than 2,000 synthetic analogues of the biological active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), are presently known. Basically, all of them interfere with the molecular switch of nuclear 1alpha,25(OH)(2)D(3) signaling, which is the complex of the vitamin D receptor (VDR), the retinoid X receptor (RXR), and a 1alpha,25(OH)(2)D(3) response element (VDRE). Central element of this molecular switch is the ligand-binding domain (LBD) of the VDR, which can be stabilized by a 1alpha,25(OH)(2)D(3) analogue either in its agonistic, antagonistic, or non-agonistic conformation. The positioning of helix 12 of the LBD is of most critical importance for these conformations. In each of the three conformations, the VDR performs different protein-protein interactions, which then result in a characteristic functional profile. Most 1alpha,25(OH)(2)D(3) analogues have been identified as agonists, a few are antagonists (e.g., ZK159222 and TEI-9647), and only Gemini and some of its derivatives act under restricted conditions as non-agonists. The functional profile of some 1alpha,25(OH)(2)D(3) analogues, such as EB1089 and Gemini, can be modulated by protein and DNA interaction partners of the VDR. This provides them with some selectivity for DNA-dependent and -independent signaling pathways and VDRE structures.  相似文献   

11.
The crystal structures of vitamin D nuclear receptor (VDR) have revealed that all compounds are anchored by the same residues to the ligand binding pocket (LBP). Based on this observation, a synthetic analog with a locked side chain (21-nor-calcitriol-20(22),23-diyne) has been synthesized in order to gain in entropy energy with a predefined active side chain conformation. The crystal structure of VDR LBD bound to this locked side chain analogue while confirming the docking provides a structural basis for the activity of this compound.  相似文献   

12.
13.
14.
Three-dimensional structure of the ligand binding domain (LBD) of the vitamin D receptor (VDR) docked with the natural ligand 1 alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] has been mostly solved by the X-ray crystallographic analysis of the deletion mutant (VDR-LBD Delta 165-215). The important focus, from now on, is how the VDR recognizes and interacts with potent synthetic ligands. We now report the docking models of the VDR with three functionally and structurally interesting ligands, 22-oxa-1,25-(OH)(2)D(3) (OCT), 20-epi-1,25-(OH)(2)D(3) and 20-epi-22-oxa-24,26,27-trihomo-1,25-(OH)(2)D(3). In parallel with the computational docking studies, we prepared twelve one-point mutants of amino acid residues lining the ligand binding pocket of the VDR and examined their transactivation potency induced by 1,25-(OH)(2)D(3) and these synthetic ligands. The results indicate that L233, R274, W286, H397 and Y401 are essential for holding the all ligands tested, S278 and Q400 are not important at all, and the importance of S237, V234, S275, C288 and H305 is variable depending on the side-chain structure of the ligands. Based on these studies, we suggested key structural factors to bestow the selective action on OCT and the augmented activities on 20-epi-ligands. Furthermore, the docking models coincided well with our proposed active space-region theory of vitamin D based on the conformational analyses of ligands.  相似文献   

15.
The vitamin D receptor (VDR) is a member of the steroid receptor gene family. In this report, we examine the nature of specific VDR DNA binding utilizing the vitamin D-responsive element derived from the human osteocalcin promoter. Association of the VDR with the human osteocalcin 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) responsive element (VDRE) in vitro was characterized on VDRE affinity columns by both weak and strong interactions. Weak interaction was a property of the VDR itself, monomeric in nature, and determined exclusively by the VDR's DNA-binding domain. Strong interaction, in contrast, was dependent upon an intact receptor molecule as well as a heterologous mammalian cell nuclear accessory factor (NAF). Heteromeric interaction between VDR and NAF was independent of the VDR DNA-binding domain, suggesting the presence of a functional dimerization domain separate from that for DNA binding. Direct association of NAF with immobilized VDR revealed that the interaction does not require the presence of DNA. Most importantly, while occupancy of the VDR by 1,25(OH)2D3 was not required for VDR interactions with either DNA or NAF, the presence of hormone increased the apparent relative affinity of the VDR for NAF approximately 10-fold. These studies suggest that high affinity association of the VDR with DNA requires both the DNA-binding domain as well as an additional independent structure located within the steroid-binding region. This protein subdomain interacts with NAF and is regulated by 1,25(OH)2D3.  相似文献   

16.
The crystal structure of the ligand binding domain (LBD) of the wild-type Vitamin D receptor (VDR) of zebrafish bound to Gemini, a synthetic agonist ligand with two identical side chains branching at carbon 20 reveals a ligand-dependent structural rearrangement of the ligand binding pocket (LBP). The rotation of a Leu side chain opens the access to a channel that can accommodate the second side chain of the ligand. The 25% increase of the LBP's volume does not alter the essential agonist features of VDR. The possibility to adapt the LBP to novel ligands with different chemistry and/or structure opens new perspectives in the design of more specifically targeted ligands.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号