首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
The stromal vascular fraction (SVF) of adipose tissue contains an abundant population of multipotent adipose-tissue-derived stem cells (ASCs) that possess the capacity to differentiate into cells of the mesodermal lineage in vitro. For cell-based therapies, an advantageous approach would be to harvest these SVF cells and give them back to the patient within a single surgical procedure, thereby avoiding lengthy and costly in vitro culturing steps. However, this requires SVF-isolates to contain sufficient ASCs capable of differentiating into the desired cell lineage. We have investigated whether the yield and function of ASCs are affected by the anatomical sites most frequently used for harvesting adipose tissue: the abdomen and hip/thigh region. The frequency of ASCs in the SVF of adipose tissue from the abdomen and hip/thigh region was determined in limiting dilution and colony-forming unit (CFU) assays. The capacity of these ASCs to differentiate into the chondrogenic and osteogenic pathways was investigated by quantitative real-time polymerase chain reaction and (immuno)histochemistry. A significant difference (P = 0.0009) was seen in ASC frequency but not in the absolute number of nucleated cells between adipose tissue harvested from the abdomen (5.1 ± 1.1%, mean ± SEM) and hip/thigh region (1.2 ± 0.7%). However, within the CFUs derived from both tissues, the frequency of CFUs having osteogenic differentiation potential was the same. When cultured, homogeneous cell populations were obtained with similar growth kinetics and phenotype. No differences were detected in differentiation capacity between ASCs from both tissue-harvesting sites. We conclude that the yield of ASCs, but not the total amount of nucleated cells per volume or the ASC proliferation and differentiation capacities, are dependent on the tissue-harvesting site. The abdomen seems to be preferable to the hip/thigh region for harvesting adipose tissue, in particular when considering SVF cells for stem-cell-based therapies in one-step surgical procedures for skeletal tissue engineering.  相似文献   

2.
Adipose tissue contains a heterogeneous population of mature adipocytes, endothelial cells, immune cells, pericytes, and preadipocytic stromal/stem cells. To date, a majority of proteomic analyses have focused on intact adipose tissue or isolated adipose stromal/stem cells in vitro. In this study, human subcutaneous adipose tissue from multiple depots (arm and abdomen) obtained from female donors was separated into populations of stromal vascular fraction cells and mature adipocytes. Out of 960 features detected by 2-D gel electrophoresis, a total of 200 features displayed a 2-fold up- or down-regulation relative to each cell population. The protein identity of 136 features was determined. Immunoblot analyses comparing SVF relative to adipocytes confirmed that carbonic anhydrase II was up-regulated in both adipose depots while catalase was up-regulated in the arm only. Bioinformatic analyses of the data set determined that cytoskeletal, glycogenic, glycolytic, lipid metabolic, and oxidative stress related pathways were highly represented as differentially regulated between the mature adipocytes and stromal vascular fraction cells. These findings extend previous reports in the literature with respect to the adipose tissue proteome and the consequences of adipogenesis. The proteins identified may have value as biomarkers for monitoring the physiology and pathology of cell populations within subcutaneous adipose depots.  相似文献   

3.
Two cell populations with a phenotype similar to that of mesenchymal stem cells (MSC) with different characteristics for expression of surface antigene CD34 were derived from subcutaneous fat. CD34-positive cells were derived from subcutaneous fat of the inferior eyelid obtained during transconjuctival blepharoplasty. CD34-negative cells were derived from adipose tissue obtained during lipoaspiration from the same patients. These cells displayed common characteristics for morphology and expression of basic markers characterizing them as mesenchymal stem cells. On being induced for differentiation, these two cell populations were able to differentiate to cells of adipose (adipocytes), bone (osteoblastes, osteocytes), cartilage (chondroblasts, chondrocytes), and nervous (neurons, astrocytes and oligodendrocytes) tissues.  相似文献   

4.
Mesenchymal stem cells (MSCs) are heterogeneous population of cells with great potential for regenerative medicine. MSCs are relatively easy to expand in a cell culture, however determination of their concentration in harvested tissue is more complex and is not implemented as routine procedure. To identify MSCs collected from bone marrow we have used two combinations of cell markers (CD45?/CD73+/CD90+/CD105+ and CD45?/CD271+) and fibroblast colony-forming unit (CFU-F) assay. Further, in donors of various ages, mesenchymal stem cell concentration was compared with the result of CFU-F assay and with hematopoietic stem cell concentration, determined by a standardized flow cytometric assay. A positive correlation of MSC populations to the CFU-F numbers is observed, the population of the CD45?/CD271+ cells correlates better with CFU-F numbers than the population of the CD45?/CD73+/CD90+/CD105+ cells. The relationship between the hematopoietic CD45dim/CD34+ cell concentration and mesenchymal CFU-Fs or CD45?/CD271+ cells shows a positive linear regression. An age-related quantitative reduction of hematopoietic CD45dim/CD34+, mesenchymal CD45?/CD73+/CD90+/CD105+ and CD45?/CD271+ stem cells, and CFU-F numbers were noted. Additionally, statistically significant higher CFU-F numbers were observed when bone marrow samples were harvested from three different sites from the anterior iliac crest instead of harvesting the same sample amount only from one site.  相似文献   

5.
We compared the two sources of adipose and bone marrow-derived mesenchymal stem cells (BMSCs and AMSCs ) in multiple differentiation capacity and biological characteristics to provide a theoretical basis for stem cells transplantation. We isolated bone marrow- and adipose-derived mesenchymal stem cells and compared their phenotype,cell doubling time, the secretion of factors and their ability of multi-differentiation. We also compared their differences in T lymphocyte activation, proliferation and suppression. BMSCs and AMSCs were similar in cell phenotype and the differences existed only in the expression of CD106. On the proliferation rate, AMSCs were faster than BMSCs (doubling time 28 vs. 39?h). In addition, both of these two sources of cells were able to differentiate into bone, fat and cartilage that proved their stem cells properties and the number of stem cell progenitors (CFU-F) from adipose tissue were 10 times larger than those from bone marrow. But AMSCs showed a diminished capacity for suppressing T lymphocyte proliferation and activation compared to BMSCs. Cell origin and abundance were decisive factors in stem cells applications and, in the same volume, with the same premise of AMSCs and BMSCs, adipose tissue is a more promising source of stem cells.  相似文献   

6.
We studied the ability of the hemopoietic organ stroma to recover from damage inflicted by 5 or 7 Gy gamma radiation administered during a period of stromal growth in 4-week-old mice. Irradiation resulted in an immediate depletion of femoral colony-forming fibroblastic progenitors (CFU-F) down to 10-20% of age-matched control values. A full recovery to normal numbers occurred between 120 and 240 days after irradiation and was followed by a secondary decrease 1 year after irradiation. This secondary decrease was accompanied by a decrease in the femoral CFU-S and CFU-C content. Femoral CFU-F attained normal numbers and it was demonstrated to occur from surviving CFU-F and could not be enhanced or prolonged following infusion of unirradiated bone marrow cells after irradiation. During the transient CFU-F recovery the hemopoietic stroma remained severely damaged as judged by the regenerative capacity of spleen and femur stroma after subcutaneous implantation, and the ability of the spleen to accumulate CFU-S in response to lipopolysaccharide injection. We have reported earlier that in similarly irradiated adult mice, no restoration of femoral CFU-F was observed. This difference between 4-week-old and adult mice could not be explained by a difference in in vitro radiosensitivity of CFU-F or in their in vivo regeneration kinetics following irradiation and subsequent lipopolysaccharide injection. We conclude from these observations that the recovery kinetics of the CFU-F population is different in young and adult irradiated mice, infused CFU-F do not contribute to CFU-F regeneration in an irradiated femur, CFU-F are not the sole determinants of stromal regeneration in femur and spleen following irradiation.  相似文献   

7.
From heterogeneity to plasticity in adipose tissues: site-specific differences   总被引:10,自引:0,他引:10  
In mammals, two types of adipose tissues are present, brown (BAT) and white (WAT). WAT itself can be divided into subcutaneous and internal fat deposits. All these tissues have been shown to present a great tissue plasticity, and recent data emphasized on the multiple differentiation potentials obtained from subcutaneous WAT. However, no study has compared the heterogeneity of stroma-vascular fraction (SVF) cells and their differentiation potentials according to the localization of the fat pad. This study clearly demonstrates that WAT and BAT present different antigenic features and differentiation potentials. WAT by contrast to BAT contains a large population of hematopoietic cells composed essentially of macrophages and hematopoietic progenitor cells. In WAT, the non-hematopoietic population is mainly composed of mesenchymal stem cell (MSC)-like but contains also a significant proportion of immature cells, whereas in BAT, the stromal cells do not present the same phenotype. Internal and subcutaneous WAT present some discrete differences in the phenotype of their cell populations. WAT derived SVF cells give rise to osteoblasts, endothelial cells, adipocytes, hematopoietic cells, and cardiomyoblasts only from inguinal cells. By contrast, BAT derived SVF cells display a reduced plasticity. Adipose tissues thus appear as complex tissues composed of different cell subsets according to the location of fat pads. Inguinal WAT appears as the most plastic adipose tissue and represents a potential and suitable source of stem cell, considering its easy sampling as a major advantage for cell therapy.  相似文献   

8.
《Cytotherapy》2020,22(9):486-493
PurposeThe prevalence of connective tissue progenitor cells within a cell-based therapy is often quantified using the colony-forming unit fibroblast (CFU-F) assay. The present study investigates the feasibility of using cryopreserved bone marrow aspirate concentrate (BMAC) as an alternative cell source to fresh BMAC for CFU-F quantification.MethodsFreshly prepared and corresponding cryopreserved BMAC samples from patients receiving autologous cell therapy (n = 98) were analyzed using the CFU-F assay for comparison. Cultures were established by directly plating BMAC at low cell densities and maintained for a 2-week growth period. Colonies were enumerated to determine CFU-F frequency, and a subset of cultures was imaged and analyzed to quantify colony area and density.ResultsA nonlinear relationship was observed between plating density and CFU-F frequency over a wide range in plating densities (~30-fold). Cryopreserved BMAC yielded recoverable (77 ± 23%) and viable (73 ± 9%) nucleated cells upon thawing. After cryopreservation, CFU-F frequencies were found to be significantly lower (56.6 ± 34.8 vs. 50.3 ± 31.7 colonies per million nucleated cells). Yet the number of CFU-F in fresh and cryopreserved BMAC were strongly correlated (r = 0.87) and had similar area and densities. Further, moderate correlations were observed between the number of CFU-F and nucleated cells, and both the mean colony area and density were negatively correlated with patient age. Notably, no relationship was found between CFU-F frequency and age, regardless of whether fresh or cryopreserved BMAC was used.ConclusionsFreshly prepared and cryopreserved BMAC yielded correlated results when analyzed using the CFU-F assay. Our findings support the cryogenic storage of patient BMAC samples for retrospective CFU-F analyses, offering a potential alternative for characterizing BMAC and furthering our understanding of progenitor cells in relation to clinical outcome.  相似文献   

9.
When Friend virus-induced leukemic cell lines were injected into irradiated hosts after the second radiation dose, the colony-forming unit (CFU) in the recipient spleens per 104 cells was found to be 7-fold higher than the CFU obtained when the second radiation dose had been given shortly after the inoculation of the cells. Serial passage of the cells from the spleen colonies to irradiated hosts resulted in a marked increase of the CFU value, indicating that this cell population was capable of both self-replication and erythroid differentiation. The “f” fraction, which indicates the percentage of the inoculated cells that reach the spleen in the irradiated recipients, was found to be approximately 15%. If the highest CFU value obtained from serial colony-to-colony passages is corrected by this factor, a final cloning efficiency of about 18% is demonstrated. Neither induced plethora nor the administration of erythropoietin (1 u/mouse/for 2 days) appeared to affect the spleen colony-forming ability of the leukemic cells. Erythroid differentiation is not detectable in the transplantable subcutaneous tumors which were used to initiate the tissue culture lines and which also are capable of inducing erythroid spleen clones in irradiated recipients. This lends support to the theory of the influence of “microenvironmental factors” on the fate of stem cells with potential for differentiation.  相似文献   

10.
Fariha MM  Chua KH  Tan GC  Tan AE  Hayati AR 《Cytotherapy》2011,13(5):582-593
Background aimsFetal membrane from human placenta tissue has been described as a potential source of stem cells. Despite abundant literature on amnion stem cells, there are limited studies on the stem cell properties of chorion-derived stem cells.MethodsThe main aim was to determine the stemness properties of serial-passaged human chorion-derived stem cells (hCDSC). Quantitative polymerase chain reaction (PCR) was performed to reveal the following stemness gene expression in serial-passaged hCDSC: Oct-4, Sox-2, FGF-4, Rex-1, TERT, Nanog (3), Nestin, FZD-9, ABCG-2 and BST-1. Cell growth rate was evaluated from passage (P) 1 until P5. The colony-forming unit–fibroblast (CFU-F) frequency of P3 and P5 cells and multilineage differentiation potential of P5 cells were determined. The immunophenotype of hCDSC was compared using the surface markers CD9, CD31, CD34, CD44, CD45, CD73, CD90, CD117, HLA-ABC and HLA-DR, -DP and -DQ. Immunostaining for trophoblast markers was done on P0, P1, P3 and P5 cells to detect the contamination of trophoblasts in culture, while chromosomal abnormality was screened by cytogenetic analysis of P5 cells.ResultsThe surface markers for mesenchymal lineage in hCDSC were more highly expressed at P5 compared with P3 and P0, indicating the increased purity of these stem cells after serial passage. Indeed, all the stemness genes except TERT were expressed at P1, P3 and P5 hCDSC. Furthermore, human chorion contained high clonogenic precursors with a 1:30 CFU-F frequency. Successful adipogenic, chondrogenic and osteogenic differentiation demonstrated the multilineage potential of hCDSC. The karyotyping analysis showed hCDSC maintained chromosomal stability after serial passage.ConclusionshCDSC retain multipotent potential even at later passages, hence are a promising source for cell therapy in the future.  相似文献   

11.
目的:研究Tbx18是否能成功转染脂肪干细胞并使脂肪干细胞向心肌细胞分化。方法:分离培养来源于日本大耳兔腹股沟部脂肪的兔脂肪干细胞,用搭载有Tbx18的腺病毒载体转染脂肪干细胞,诱导分化后检测向心肌细胞的分化情况,同时将转染了含GFP的腺病毒组与未转染组作为对照。采用用流式细胞仪检测转染效率,采用免疫荧光法检测平滑肌肌动蛋白α-SMA,采用实时定量PCR法检测兔肌钙蛋白TNNT2的表达。结果:转染后荧光显微镜下可观察到荧光表达,且持续时间较长。流式细胞仪检测转染效率为70%左右;诱导分化后,脂肪干细胞内出现了α-SMA和TNNT2的表达。结论:Tbx18可成功转染入脂肪干细胞,且能在细胞内稳定表达;Tbx18可诱导脂肪干细胞向心肌样细胞分化。  相似文献   

12.
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3 D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3 D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.  相似文献   

13.
Background aimsMesenchymal stromal cells (MSC) are the most popular cells used in regenerative medicine and biotechnology. The clonogenic potential of these cells is defined by colony-forming unit-fibroblasts (CFU-F). It is well known that there is an interaction between hematopoietic cells and stromal cells in disease formation pathogenesis. Therefore we hypothesized that there should be a quantitative and qualitative relationship between MSC colonies (CFU-F) and hematopoietic stem cell colonies (colony-forming unit-granulocyte-macrophages; CFU-GM) among patients with and without hematologic diseases.MethodsForty-two patients were included in this study. Patients were divided into three groups: group A, patients with hematologic malignancies (n = 20); group B, patients with bone marrow (BM) failure (n = 11); group C, patients without hematologic diseases (n = 11). BM aspirates were plated in different densities for CFU-F culture. The plating density was the same for CFU-GM culture.ResultsCFU-GM colonies grew in 90% of group A cells and all of group B and C cells (P = 0.0001). CFU-F colonies became visible on the ninth day of plating in group A and on the eight day in groups B and C. There was no statistically significant difference between the groups for the duration of CFU-F colony formation (P = 0.12). There were differences in the morphology of the colonies among the groups.ConclusionsThis is the first study that has compared the clonogenic potential of stromal cells and hematopoietic stem cells in the same subjects with and without hematologic diseases. No correlation was shown between the clonogenic potential of stromal cells and hematopoietic cells.  相似文献   

14.
The acute radiosensitivity in vivo of the murine hematopoietic stroma for 1 MeV fission neutrons or 300 kVp X rays was determined. Two different assays were used: (1) an in vitro clonogenic assay for fibroblast precursor cells (CFU-F) and (2) subcutaneous grafting of femora or spleens. The number of stem cells (CFU-S) or precursor cells (CFU-C), which repopulated the subcutaneous implants, was used to measure the ability of the stroma to support hemopoiesis. The CFU-F were the most radiosensitive, and the survival curves after neutron and X irradiation were characterized by D0 values of 0.75 and 2.45 Gy, respectively. For regeneration of CFU-S and CFU-C in subcutaneously implanted femora, D0 values of 0.92 and 0.84 Gy after neutron irradiation and 2.78 and 2.61 Gy after X irradiation were found. The regeneration of CFU-S and CFU-C in subcutaneously implanted spleens was highly radioresistant as evidenced by D0 values of 2.29 and 1.49 Gy for survival curves obtained after neutron irradiation, and D0 values of 6.34 and 4.85 Gy after X irradiation. The fission-neutron RBE for all the cell populations was close to 3 and varied from 2.77 to 3.28. The higher RBE values observed for stromal cells, compared to the RBE of 2.1 reported previously for hemopoietic stem cells, indicate that stromal cells are relatively more sensitive than hemopoietic cells to neutron irradiation.  相似文献   

15.
Human adipocyte precursor cells (APC) have been characterized in their proliferation and differentiation potential from subcutaneous, omental, and mesenteric depots, mostly from morbidly obese patients. Cells from the preperitoneal adipose compartment have not been characterized yet, least of all when obtained from normal weight subjects. The aim was to compare proliferation and differentiation of subcutaneous (SC) and preperitoneal (PP) APC derived from adipose tissue in healthy subjects with different body mass. SC and PP adipose tissue was obtained during surgery of inguinal hernias in five healthy non‐obese subjects and three obese otherwise healthy men. APC, obtained by collagenase digestion, were cultured. Proliferation was assayed by cell counting and differentiation by oil red O staining and flow cytometry using Nile Red staining. Proliferation of SC was higher than PP APC. Such differences between both compartments were even higher in APC obtained from obese patients. Conversely PP APC differentiated earlier in vitro compared with SC cells. These results agree with published data on fat cell proliferation. However regarding differentiation, our data show that APC from deeper depots (in this case PP) differentiate earlier than subcutaneous APC. This is different to previous studies performed in mesenteric or omental adipose tissue. J. Cell. Biochem. 111: 659–664, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

17.
Recent evidence suggests that cells with the properties of human mesenchymal stem cells (hMSCs) can be derived from adult peripheral tissues, including adipose tissue, muscle and dermis. We isolated hMSCs from the stromal-vascular portion of subcutaneous adipose tissue from seven adult subjects. These cells could be readily differentiated into cells of the chondrocyte, osteocyte and adipocyte lineage demonstrating their multipotency. We studied the functional properties of hMSCs-derived adipocytes and compared them with adipocytes differentiated from hMSCs obtained from bone marrow (BM-hMSC). The two cell types displayed similar lipolytic capacity upon stimulation with catecholamines, including a pronounced antilipolytic effect mediated through alpha2A-adrenoceptors, a typical trait in human but not rodent fat cells. Furthermore, both cell types secreted the fat cell-specific factors leptin and adiponectin in comparable amounts per time unit. The fat tissue-derived hMSCs retained their differentiation capacity up to at least fifteen passages. We conclude that hMSCs derived from adult human adipose tissue can be differentiated into fully functional adipocytes with a similar, if not identical, phenotype as that observed in cells derived from BM-hMSCs. Human adipose-tissue-derived MSCs could therefore constitute an efficient and easily obtainable renewable cellular source for studies of adipocyte biology.  相似文献   

18.
Jin  Lianhua  Lu  Na  Zhang  Wenxin  Zhou  Yan 《Cytotechnology》2021,73(4):657-667

Adipose-derived stromal cells (ASCs) are now recognized as an accessible, abundant, and reliable stem cells for tissue engineering and regenerative medicine. However, ASCs should be expanded long term in order to harvest higher cell number for clinical application. In this study, ASCs isolated from human subcutaneous adipose tissue and senescence after long-term expansion was evaluated. The results showed that following in vitro expansion to the 15th passage, ASCs show changes in morphology (toward the “fried egg” morphology) and decrease in proliferation potential. Nonetheless, ASCs maintained differentiation potential toward osteoblasts, chondrocytes, and adipocytes. The senescent ASCs show impaired migration capacity under the same basal conditions. OXPHOS and glycolysis decreased slightly in culture from passage 5 to passage 15. ASCs also showed increased accumulation of beta-galactosidase in culture. Expression of senescence markers p53, p16, and p21 were also increased accompanied with the increase of passages. Experiment data showed that ASCs biological characteristics depended and changed with age. We recommend the use of early-passage cells, particularly those before passage 5, for efficacious therapeutic application of stem cells.

  相似文献   

19.
Mesenchymal stem-like cells identified in different tissues reside in a perivascular niche. In the present study, we investigated the putative niche of adipose-derived stromal/stem cells (ASCs) using markers, associated with mesenchymal and perivascular cells, including STRO-1, CD146, and 3G5. Immunofluorescence staining of human adipose tissue sections, revealed that STRO-1 and 3G5 co-localized with CD146 to the perivascular regions of blood vessels. FACS was used to determine the capacity of the CD146, 3G5, and STRO-1 specific monoclonal antibodies to isolate clonogenic ASCs from disassociated human adipose tissue. Clonogenic fibroblastic colonies (CFU-F) were found to be enriched in those cell fractions selected with either STRO-1, CD146, or 3G5. Flow cytometric analysis revealed that cultured ASCs exhibited similar phenotypic profiles in relation to their expression of cell surface markers associated with stromal cells (CD44, CD90, CD105, CD106, CD146, CD166, STRO-1, alkaline phosphatase), endothelial cells (CD31, CD105, CD106, CD146, CD166), haematopoietic cells (CD14, CD31, CD45), and perivascular cells (3G5, STRO-1, CD146). The immunoselected ASCs populations maintained their characteristic multipotential properties as shown by their capacity to form Alizarin Red positive mineralized deposits, Oil Red O positive lipid droplets, and Alcian Blue positive proteoglycan-rich matrix in vitro. Furthermore, ASCs cultures established from either STRO-1, 3G5, or CD146 selected cell populations, were all capable of forming ectopic bone when transplanted subcutaneously into NOD/SCID mice. The findings presented here, describe a multipotential stem cell population within adult human adipose tissue, which appear to be intimately associated with perivascular cells surrounding the blood vessels.  相似文献   

20.
Only few studies have been addressed to the presence and regulation of C-reactive protein (CRP) gene expression in different districts of adipose tissue, and no study has investigated the role of adipose tissue in presence of inflammation. Therefore, the aim of this study was to investigate the inflammatory involvement of either adipose tissue or adipose cells (adipocytes and stromal cells, respectively) in patients with chronic inflammatory disease, focusing on regional adipose tissue CRP gene expression. Eighteen patients with inflammatory disease and 14 healthy controls were enrolled. All subjects underwent specific surgical procedures. Inflamed and noninflamed patients provided samples of subcutaneous and/or omental adipose tissue. All samples were analyzed by RT-PCR and real-time PCR for specific gene expression. In addition, both adipocytes and stromal cells were studied by real-time PCR and immunoprecipitation to evaluate either gene or protein expression of CRP. Our results (real-time PCR) demonstrated a higher gene expression of CRP, IL-6, and both IL-6 membrane receptors in subcutaneous samples of inflamed patients than in healthy controls. Furthermore, in omental fragments of inflamed patients, an enhanced mRNA abundance of the same genes, compared with subcutaneous, was observed. The results obtained at cellular level did not provide evidence of any difference between adipocytes and stromal cell CRP gene expression, whereas immunoprecipitation demonstrated the presence of CRP in inflamed subjects. These results provide first-time evidence of the involvement of adipose tissue in the course of chronic inflammatory diseases, with a different degree of participation of the different adipose tissue districts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号