首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments exploring the reasons for a multiplicity of products from early region 1A of adenovirus 5 are described. Labeled early region 1A products from wild-type virus were synthesized in infected cells and in a cell-free system programmed with mRNA from infected cells, immunoprecipitated specifically with an antipeptide serum, E1A-C1, directed against the C-terminal sequence of E1A products, and separated by gel electrophoresis. Two-dimensional maps of [35S]methionine-labeled peptides were consistent with antigens of 52,000 daltons (52K) and 48.5K being from the 13S mRNA and antigens of 50K, 45K, and 35K from the 12S mRNA. Partial N-terminal sequences of 52K, 50K, 48.5K, and 45K synthesized in vitro showed that each of these antigens was initiated at the predicted ATG at nucleotide 560 in the DNA sequence. These results eliminate multiple initiation sites and proteolytic cleavage at the N-terminal end as sources of antigen diversity. Peptide maps and N-terminal sequences were obtained in a similar way for E1A products from the Ad5 deletion mutant dl1504, which lacks the normal initiator codon. As predicted, these polypeptides are initiated at the next ATG, 15 codons downstream in the wild-type sequence. These results are discussed in relation to Kozak's ribosomal scanning model.  相似文献   

2.
Covalent ligation of multiubiquitin chains targets eukaryotic proteins for degradation. Ubiquitin-conjugating enzyme E2(25K) utilizes isolated ubiquitin as the substrate for synthesis of such chains, in which successive ubiquitin units are linked by isopeptide bonds involving the side chain of Lys-48 of one ubiquitin and the COOH group of Gly-76 of the next. During continuous synthesis of multiubiquitin chains in the presence of purified ubiquitin-activating enzyme and E2(25K), there was a slight discrimination against radioiodinated ubiquitin (2.3-fold reduction in specific radioactivity of diubiquitin relative to value expected for no discrimination). Single-turnover experiments employing stoichiometrically iodinated ubiquitin derivatives indicated that E2(25K) discriminates extremely strongly (greater than 20-fold reduction in kcat/Km for diubiquitin synthesis) against ubiquitin that is monoiodinated at Tyr-59. The modest overall selection effect observed in continuous reactions is in part due to the occurrence of discrimination only when iodotyrosylubiquitin is the acceptor (Lys-48 donor) in diubiquitin synthesis; iodotyrosylubiquitin is kinetically competent when it is the species being transferred to native ubiquitin. The competence as acceptor of a site-directed mutant form of ubiquitin bearing a Tyr to Phe substitution at position 59 indicated that discrimination against iodotyrosylubiquitin by E2(25K) is not due to loss of the hydrogen-bonding interactions of Tyr-59. Rather, iodotyrosylubiquitin may be unable to react with the ubiquitin adduct of E2(25K) for steric reasons. Discrimination against iodotyrosylubiquitin as acceptor is unique to E2(25K) among three enzymes surveyed: iodotyrosylubiquitin is a fully competent acceptor in diubiquitin synthesis catalyzed by E2(25K) and is also utilized for multiubiquitin chain synthesis by E2(14K) and ubiquitin-protein ligase. These findings should assist in the design of future studies concerning E2(25K) structure and function.  相似文献   

3.
Nucleotide sequence of the EcoRI E fragment of adenovirus 2 genome.   总被引:21,自引:8,他引:13       下载免费PDF全文
The entire nucleotide sequence of the Ad.2 EcoRI E fragment has been determined using the Maxam and Gilbert method. This sequence of 2222 bp, which maps between coordinate 83.4 and 89.7 contains information relative to the early 3 region and to the fiber gene. Altogether with fragment EcoRI D which has been recently sequenced, they cover the entire Early 3 region in which several mRNA were mapped. The aminoacid sequence of the 16K and 14K protein is deduced. The localization of the 14.5K mRNA directing the synthesis of the third E3 known protein is discussed, as well as the hypothetical existence of three other early 3 proteins, which would have a molecular weight of 11K. The initiator ATG triplet of the fiber protein has been found at coordinate 86.1, it is followed up to the end of the fragment by an open reading frame allowing deduction of 80% of the aminoacid sequence of this protein. Sequences known to be frequently present at the border of exon sequence were used to tentatively localize the additional "Z" late leader.  相似文献   

4.
We have isolated from a constructed lambda gt11 expression library two classes of cDNA clones encoding the entire sequence of the maize GSH S-transferases GST I and GST III. Expression of a full-length GST I cDNA in E. coli resulted in the synthesis of enzymatically active maize GST I that is immunologically indistinguishable from the native GST I. Another GST I cDNA with a truncated N-terminal sequence is also active in heterospecific expression. Our GST III cDNA sequence differs from the version reported by Moore et al. [Moore, R. E., Davies, M. S., O'Connell, K. M., Harding, E. I., Wiegand, R. C., and Tiemeier, D. C. (1986) Nucleic Acids Res. 14:7227-7235] in eight reading frame shifts which result in partial amino acid sequence conservation with the rat GSH S-transferase sequences. The GST I and GST III sequences share approximately 45% amino acid sequence homology. Both the GST I and the GST III mRNAs contain different repeating motifs in front of the initiation codon ATG. Multiple poly(A) addition sites have been identified for these two classes of maize GSH S-transferase messages. Genomic Southern blotting results suggest that both GST I and GST III are present in single or low copies in the maize (GT112 RfRf) genome.  相似文献   

5.
T D Ingolia  E A Craig  B J McCarthy 《Cell》1980,21(3):669-679
The primary sequence of the major heat shock gene of D. melanogaster, that for the 70,000 protein, has been determined. One of the reading frames is devoid of stop codons for over 2000 bp. The region between the first ATG and the first stop codon encodes a protein of molecular weight 70,270. The 5' end of the messenger RNA was localized in the DNA sequence by two independent methods. The 5' flanking sequences of three distinct 70K genes were also determined. Extensive homology in the primary sequences extends about 500 bp upstream from the ATG, which is the presumptive initiation of protein synthesis. Each 70K gene has the putative promoter sequence TATAAATA about 325 bp upstream from this ATG. A heptanucleotide sequence identified as the capping site for other messengers is found 24-30 bp downstream from the ends of the A-T-rich sequence. A 12 bp sequence with dyad symmetry begins 23 bp upstream from the beginning of the above A-T-rich sequence.  相似文献   

6.
RNA recombination plays an important role in the diversification and evolution of RNA viruses. Most of these events are believed to be mediated by an actively copying viral replicase switching from a donor template to an acceptor template, where it resumes synthesis. In addition, intramolecular replicase-mediated events (i.e., rearrangements) can lead to the generation of replicable deleted forms of a viral genome, termed defective interfering (DI) RNAs. To gain further insight into the recombination process, the effect of various primary and secondary structures on recombination site selection in vivo was examined using plant RNA tombusviruses. The effect of sequence identity and complementarity on deletion events that generate DI RNAs was also investigated. Our results suggest that (1) 5' termini and strong hairpin structures in donor templates represent preferred sites for recombinations, (2) junction sites in acceptor templates do not occur in double-stranded regions, (3) nucleotide homology can shift donor and acceptor recombination sites closer to regions of identity and, (4) both sequence identity and complementarity can direct deletion sites in DI RNAs. These results further define RNA determinants of tombusvirus RNA recombination and rearrangement.  相似文献   

7.
Adenylosuccinate synthetase (EC 6.3.4.4), encoded by the purA gene of Escherichia coli K12, catalyzes the synthesis of adenylosuccinate (SAMP) from IMP, the first committed step in AMP biosynthesis. The E. coli K12 purA gene and flanking DNA was cloned by miniMu-mediated transduction, and the nucleotide sequence was determined. The mature SAMP synthetase subunit, as deduced from the DNA sequence, contains 427 amino acid residues and has a calculated Mr of 47,277. The size of the purA mRNA was determined by Northern blotting to be approximately 1.5 kilobase pairs. The 5'-end of the purA mRNA was identified by primer extension and is located 23 nucleotides upstream of the ATG translational initiation codon. Comparison of the purA control region with the guaBA control region revealed a common region of dyad symmetry which may suggest mutual elements of regulation. The purA control region did not resemble the control regions of the other known pur loci.  相似文献   

8.
9.
10.
11.
12.
13.
High affinity acceptors for alpha-dendrotoxin, a selective probe for certain fast activating voltage-dependent K+ channels, were purified approximately 4,000-fold from synaptic plasma membranes of bovine cerebral cortex. Although the preparation possessed a low content of high affinity sites for beta-bungarotoxin, antagonism of alpha-dendrotoxin binding by the latter required high concentrations; this indicates that more than one acceptor subtype has been purified. After deglycosylation of the acceptor, the sizes of its subunits were determined electrophoretically to be Mr 65,000 and Mr 39,000. Solid phase microsequencing of these isolated subunits showed that the smaller one had a blocked N terminus, but the Mr 65,000 protein gave a sequence of 27 residues. This is virtually identical to the N-terminal sequence deduced from cDNA of RCK 5, a K+ channel protein from rat brain known to be susceptible to alpha-dendrotoxin. This first report on the partial sequence of any K+ channel protein confirms that the extensive information acquired to date on the alpha-dendrotoxin acceptors is pertinent to functional neuronal K+ channels.  相似文献   

14.
15.
Polysialic acids are bioactive carbohydrates found in eukaryotes and some bacterial pathogens. The bacterial polysialyltransferases (PSTs), which catalyze the synthesis of polysialic acid capsules, have previously been identified in select strains of Escherichia coli and Neisseria meningitidis and are classified in the Carbohydrate-Active enZYmes Database as glycosyltransferase family GT-38. In this study using DNA sequence analysis and functional characterization we have identified a novel polysialyltransferase from the bovine/ovine pathogen Mannheimia haemolytica A2 (PSTMh). The enzyme was expressed in recombinant form as a soluble maltose-binding-protein fusion in parallel with the related PSTs from E. coli K1 and N. meningitidis group B in order to perform a side-by-side comparison. Biochemical properties including solubility, acceptor preference, reaction pH optima, thermostability, kinetics, and product chain length for the enzymes were compared using a synthetic fluorescent acceptor molecule. PSTMh exhibited biochemical properties that make it an attractive candidate for chemi-enzymatic synthesis applications of polysialic acid. The activity of PSTMh was examined on a model glycoprotein and the surface of a neuroprogenitor cell line where the results supported its development for use in applications to therapeutic protein modification and cell surface glycan remodelling to enable cell migration at implantation sites to promote wound healing. The three PSTs examined here demonstrated different properties that would each be useful to therapeutic applications.  相似文献   

16.
17.
M Kozak 《Cell》1986,44(2):283-292
By analyzing the effects of single base substitutions around the ATG initiator codon in a cloned preproinsulin gene, I have identified ACCATGG as the optimal sequence for initiation by eukaryotic ribosomes. Mutations within that sequence modulate the yield of proinsulin over a 20-fold range. A purine in position -3 (i.e., 3 nucleotides upstream from the ATG codon) has a dominant effect; when a pyrimidine replaces the purine in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Single base substitutions around an upstream, out-of-frame ATG codon affect the efficiency with which it acts as a barrier to initiating at the downstream start site for preproinsulin. The optimal sequence for initiation defined by mutagenesis is identical to the consensus sequence that emerged previously from surveys of translational start sites in eukaryotic mRNAs. The mechanism by which nucleotides flanking the ATG codon might exert their effect is discussed.  相似文献   

18.
19.
Previous results from this laboratory indicated that, in Escherichia coli K12, a new class of missense suppressors, which read the lysine codons AAA and AAG, may be misacylated lysine transfer RNAs. We therefore isolated and determined the nucleotide sequence of the lysine tRNA from two of the suppressor strains. In each case, we found both wild-type and mutant species of lysine tRNA, a result consistent with evidence that there are two genes for lysine tRNA in the E coli genome. The wild-type sequence was essentially identical to that reported for lysine tRNA from E. coli B. The mutant species isolated from each suppressor strain had a U for C70 nucleotide substitution, demonstrating that the AAG suppressor is a mutant lysine tRNA. The nucleotide substitution in the amino acid acceptor stem is consistent with the in vivo evidence that the suppressor corrects AAA and AAG missense mutations by inserting an amino acid other than lysine during polypeptide synthesis. This report represents the first verification of missense suppression caused by misacylation of a mutant tRNA.  相似文献   

20.
The members of the LC3/Atg8 family of proteins are covalently attached to phagophore and autophagosomal membranes. At the last step of the LC3 lipidation cascade, LC3 is transferred from the E2 enzyme ATG3 to phosphatidylethanolamine (PE). This transfer is stimulated by the ATG12–ATG5-ATG16L1 E3 complex, but the mechanism is not fully understood. We recently found that ATG12 of the E3 binds to a short sequence in the flexible region (FR) of ATG3 with high affinity, and that this interaction is critical for E2–E3 complex formation. These findings, together with detailed structural analyses of this interaction, define the properties of ATG12 and provide new insights of how LC3 transfer begins with ATG3 recruitment by ATG12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号