共查询到20条相似文献,搜索用时 0 毫秒
1.
The chromosome of Streptomyces coelicolor A3(2), a model organism for the genus Streptomyces, contains a cryptic type I polyketide synthase (PKS) gene cluster which was revealed when the genome was sequenced. The ca.
54-kb cluster contains three large genes, cpkA, cpkB and cpkC, encoding the PKS subunits. In
silico analysis showed that the synthase consists of a loading module, five extension modules and a unique reductase as a terminal
domain instead of a typical thioesterase. All acyltransferase domains are specific for a malonyl extender, and have a B-type
ketoreductase. Tailoring and regulatory genes were also identified within the gene cluster. Surprisingly, some genes show
high similarity to primary metabolite genes not commonly identified in any antibiotic biosynthesis cluster. Using western
blot analysis with a PKS subunit (CpkC) antibody, CpkC was shown to be expressed in S. coelicolor at transition phase. Disruption of cpkC gave no obvious phenotype. 相似文献
2.
Expression of a functional fungal polyketide synthase in the bacterium Streptomyces coelicolor A3(2). 总被引:1,自引:0,他引:1 下载免费PDF全文
The multifunctional 6-methylsalicylic acid synthase gene from Penicillium patulum was engineered for regulated expression in Streptomyces coelicolor. Production of significant amounts of 6-methylsalicylic acid by the recombinant strain was proven by nuclear magnetic resonance spectroscopy. These results suggest that it is possible to harness the molecular diversity of eukaryotic polyketide pathways by heterologous expression of biosynthetic genes in an easily manipulated model bacterial host in which prokaryotic aromatic and modular polyketide synthase genes are already expressed and recombined. 相似文献
3.
Pawlik K Kotowska M Kolesiński P 《Journal of molecular microbiology and biotechnology》2010,19(3):147-151
Streptomyces coelicolor A3(2) is an extensively studied model organism for the genetic studies of Streptomycetes - a genus known for the production of a vast number of bioactive compounds and complex regulatory networks controlling morphological differentiation and secondary metabolites production. We present the discovery of a presumptive product of the Cpk polyketide synthase. We have found that on the rich medium without glucose S. coelicolor A3(2) produces a yellow compound secreted into the medium. We have proved by complementation that production of the observed yellow pigment is dependent on cpk gene cluster previously described as cryptic type I polyketide synthase cluster. The pigment production depends on the medium composition, does not occur in the presence of glucose, and requires high density of spore suspension used for inoculation. 相似文献
4.
Analysis of type II polyketide beta-ketoacyl synthase specificity in Streptomyces coelicolor A3(2) by trans complementation of actinorhodin synthase mutants. 下载免费PDF全文
Complementation of defined actinorhodin beta-ketoacyl synthase (KS) mutants by various other KS genes suggested that the ORF1-encoded KS may be relatively generalized in function, whereas the ORF2-encoded KS component may provide specificity in polyketide chain construction. Evidence for differential temporal-spatial expression of the actinorhodin and spore pigment KSs in Streptomyces coelicolor was obtained. 相似文献
5.
M A Fernández-Moreno E Martínez L Boto D A Hopwood F Malpartida 《The Journal of biological chemistry》1992,267(27):19278-19290
A 5.3-kb region of the Streptomyces coelicolor actinorhodin gene cluster, including the genes for polyketide biosynthesis, was sequenced. Six identified open reading frames (ORF1-6) were related to genetically characterized mutations of classes actI, VII, IV, and VB by complementation analysis. ORF1-6 run divergently from the adjacent actIII gene, which encodes the polyketide synthase (PKS) ketoreductase, and appear to form an operon. The deduced gene products of ORF1-3 are similar to fatty acid synthases (FAS) of different organisms and PKS genes from other polyketide producers. The predicted ORF5 gene product is similar to type II beta-lactamases of Bacillus cereus and Bacteroides fragilis. The ORF6 product does not resemble other known proteins. Combining the genetical, biochemical, and similarity data, the potential activities of the products of the six genes can be postulated as: 1) condensing enzyme/acyl transferase (ORF1 + ORF2); 2) acyl carrier protein (ORF3); 3) putative cyclase/dehydrase (ORF4); 4) dehydrase (ORF5); and 5) "dimerase" (ORF6). The data show that the actinorhodin PKS consists of discrete monofunctional components, like that of the Escherichia coli (Type II) FAS, rather than the multifunctional polypeptides for the macrolide PKSs and vertebrate FASs (Type I). 相似文献
6.
With the rapid generation of genetic information from the Streptomyces coelicolor genome project, deciphering the relevant gene products is critical for understanding the genetics of this model streptomycete. A putative malate synthase gene (aceB) from S. coelicolor A3(2) was identified by homology-based analysis, cloned by polymerase chain reaction, and fully sequenced on both strands. The putative malate synthase from S. coelicolor has an amino acid identity of 77% with the malate synthase of S. clavuligerus, and possesses an open reading frame which codes for a protein of 540 amino acids. In order to establish the identity of this gene, the putative aceB clones were subcloned into the expression vector pET24a, and heterologously expressed in Escherichia coli BL21(DE3). Soluble cell-free extracts containing the recombinant putative malate synthase exhibited a specific activity of 1623 (nmol.mg-1.min-1), which is an increment of 92-fold compared to the non-recombinant control. Thus, the gene product was confirmed to be a malate synthase. Interestingly, the specific activity of S. coelicolor malate synthase was found to be almost 8-fold higher than the specific activity of S. clavuligerus malate synthase under similar expression conditions. Furthermore, the genomic organisation of the three Streptomyces aceB genes cloned thus far is different from that of other bacterial malate synthases, and warrants further investigation. 相似文献
7.
Mycothiol is a low molecular weight thiol compound produced by a number of actinomycetes, and has been suggested to serve both anti-oxidative and detoxifying roles. To investigate the metabolism and the role of mycothiol in Streptomyces coelicolor, the biosynthetic genes (mshA, B, C, and D) were predicted based on sequence homology with the mycobacterial genes and confirmed experimentally. Disruption of the mshA, C, and D genes by PCR targeting mutagenesis resulted in no synthesis of mycothiol, whereas the mshB mutation reduced its level to about 10% of the wild type. The results indicate that the mshA, C, and D genes encode non-redundant biosynthetic enzymes, whereas the enzymatic activity of MshB (acetylase) is shared by at least one other gene product, most likely the mca gene product (amidase). 相似文献
8.
Streptomyces coelicolor Müller contains two types of superoxide dismutase (SOD) containing Ni (encoded by sodN) or Fe (encoded by sodF). Unlike a single species of Fe-containing SOD in Müller strain, multiple forms of FeSODs were detected in S. coelicolor A3(2) strain by activity staining and Western blot analysis. Genomic Southern hybridization suggested the presence of at least two copies of the sodF-like gene in A3(2). Two different genes for FeSOD (sodF1 and sodF2) were isolated from the phage library of A3(2) genome. The nucleotide sequence of the sodF1 coding region was identical with the unique sodF gene from Müller while that of sodF2 shared 88% identity. The gene products of sodF1 and sodF2 were identified by activity staining and immunoblot analysis. Expression from the sodF1 gene was repressed by nickel as sensitively as Müller sodF, suggesting the presence of Ni-responsive regulatory site within the region shared by the two genes. Among 12 other Streptomyces species examined, only S. fradiae contained two FeSOD-like polypeptides. We postulate that the additional copy of the sodF gene (sodF2) was provided by the horizontal transfer from remotely related bacteria. 相似文献
9.
10.
Relationships between fatty acid and polyketide synthases from Streptomyces coelicolor A3(2): characterization of the fatty acid synthase acyl carrier protein. 下载免费PDF全文
We have characterized an acyl carrier protein (ACP) presumed to be involved in the synthesis of fatty acids in Streptomyces coelicolor A3(2). This is the third ACP to have been identified in S. coelicolor; the two previously characterized ACPs are involved in the synthesis of two aromatic polyketides: the blue-pigmented antibiotic actinorhodin and a grey pigment associated with the spore walls. The three ACPs are clearly related. The presumed fatty acid synthase (FAS) ACP was partially purified, and the N-terminal amino acid sequence was obtained. The corresponding gene (acpP) was cloned and sequenced and found to lie within 1 kb of a previously characterized gene (fabD) encoding another subunit of the S. coelicolor FAS, malonyl coenzyme A:ACP acyl-transferase. Expression of S. coelicolor acpP in Escherichia coli yielded several different forms, whose masses corresponded to the active (holo) form of the protein carrying various acyl substituents. To test the mechanisms that normally prevent the FAS ACP from substituting for the actinorhodin ACP, acpP was cloned in place of actI-open reading frame 3 (encoding the actinorhodin ACP) to allow coexpression of acpP with the act polyketide synthase (PKS) genes. Pigmented polyketide production was observed, but only at a small fraction of its former level. This suggests that the FAS and PKS ACPs may be biochemically incompatible and that this could prevent functional complementation between the FAS and PKSs that potentially coexist within the same cells. 相似文献
11.
Organisation of the ribosomal RNA genes in Streptomyces coelicolor A3(2) 总被引:15,自引:0,他引:15
Summary Using Southern hybridisation of radiolabelled purified ribosomal RNAs to genomic DNA the ribosomal RNA genes of Streptomyces coelicolor A3(2) were shown to be present in six gene sets. Each gene set contains at least one copy of the 5 S, 16 S and 23 S sequences and in at least two cases these are arranged in the order 16 S-23S-5S. Three gene sets, rrnB, rrnD and rrnF, were isolated by screening a library of S. coelicolor A3(2) DNA. The restriction map of one of these, rrnD, was determined and the nucleotide sequences corresponding to the three rRNAs were localised by Southern hybridisation. The gene order in rrnD is 16S-23S-5S. 相似文献
12.
Functional complementation of pyran ring formation in actinorhodin biosynthesis in Streptomyces coelicolor A3(2) by ketoreductase genes for granaticin biosynthesis 下载免费PDF全文
Ichinose K Taguchi T Bedford DJ Ebizuka Y Hopwood DA 《Journal of bacteriology》2001,183(10):3247-3250
A mutation in actVI-ORF1, which controls C-3 reduction in actinorhodin biosynthesis by Streptomyces coelicolor, was complemented by gra-ORF5 and -ORF6 from the granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22. It is hypothesized that, while gra-ORF5 alone is a ketoreductase for C-9, gra-ORF6 gives the enzyme regiospecificity also for C-3. 相似文献
13.
14.
A Saito T Fujii T Yoneyama M Redenbach T Ohno T Watanabe K Miyashita 《Bioscience, biotechnology, and biochemistry》1999,63(4):710-718
Six different genes for chitinase from ordered cosmids of the chromosome of Streptomyces coelicolor A3(2) were identified by hybridization, using the chitinase genes from other Streptomyces spp. as probes, and cloned. The genes were sequenced and analyzed. The genes, together with an additional chitinase gene obtained from the data bank, can be classified into either family 18 or family 19 of the glycosyl hydrolase classification. The five chitinases that fall into family 18 show diversity in their multiple domain structures as well as in the amino acid sequences of their catalytic domains. The remaining two chitinases are members of family 19 chitinases, since their C-terminus shares more than 70% identity with the catalytic domain of ChiC of Streptomyces griseus, the sole gene for family 19 chitinase so far found in an organism other than higher plants. 相似文献
15.
The potential iron siderophore transporter genes have been determined from the genome sequence of Streptomyces coelicolor A3(2). One of these gene clusters, cdtABC, was disrupted and characterized to determine its role in the uptake of the siderophores produced by S. coelicolor. Resistance to the siderophore-like antibiotics, salmycin and albomycin, was tested in the parent and cdtABC mutant, showing that the parent, but not the mutant, was sensitive to salmycin, while both were resistant to albomycin. Ferrioxamine competition assays against salmycin suggest that the uptake of salmycin is via a ferrioxamine transport system. However, Fe-55 ferrioxamine B uptake experiments did not reveal any difference between the parent and mutant. This suggests that CdtABC specifically transports salmycin, while ferrioxamine uptake maybe substituted by another transport system. 相似文献
16.
天蓝色链霉菌调控基因tcrA功能的初步研究 总被引:3,自引:1,他引:3
天蓝色链霉菌的开放阅读框SCO5433编码一个含有TPR(Tetratricopeptide repeat)结构域的调控蛋白。该基因的阻断突变株表现出孢子颜色加深和色素产量增加的表型变化。孢子颜色的加深在以葡萄糖或甘露醇为碳源的MM培养基上表现明显;色素产量的增加在以甘露醇为碳源的MM培养基和MS培养基上表现最为明显;插片培养结合光学显微镜观察并没有发现突变株在形态分化上有显著变化;这些发现预示着可能存在一个SCO5433参与的调控途径,在一定条件下,这一途径对天蓝色链霉菌次级代谢可能起着负调控作用,而与形态分化无关。 相似文献
17.
18.
J E Dowding 《Journal of general microbiology》1973,76(1):163-176
19.
The genome sequencing of Streptomyces coelicolor A3(2) has lead to the identification of numerous cryptic gene clusters involved in the biosynthesis of secondary metabolites; throwing open the challenge of identifying the enzymatic functions that the gene clusters are associated with. In this work, we report the biochemical characterization of one such cryptic gene, SCO7467 from S. coelicolor A3(2), which is annotated as a prenyltransferase. Based on LC–MS and 2D-NMR studies, we show that SCO7467 acts as a 5-dimethylallyl tryptophan synthase (5-DMATS), and catalyzes the transfer of a dimethylallyl group to the C-5 position of the indole ring of l-tryptophan. The studies indicate that SCO7467 could be involved in the synthesis of C-5 prenylated indole alkaloids, which may exhibit unique pharmacological and biological properties. 相似文献
20.
Genetics of actinorhodin biosynthesis by Streptomyces coelicolor A3(2) 总被引:19,自引:0,他引:19
A series of 76 mutants of Streptomyces coelicolor A3(2) specifically blocked in the synthesis of the binaphthoquinone antibiotic actinorhodin were classified into seven phenotypic classes on the basis of antibiotic activity, accumulation of pigmented precursors or shunt products of actinorhodin biosynthesis, and cosynthesis of actinorhodin in pairwise combinations of mutants. The polarity of cosynthetic reactions, and other phenotypic properties, allowed six of the mutant classes to be arranged in the most probable linear sequence of biosynthetic blocks. One member of each mutant class was mapped unambigiguously to the chromosomal linkage map in the short segment between the hisD and guaA loci, suggesting that structural genes for actinorhodin biosynthesis may form an uninterrupted cluster of chromosomal genes. 相似文献