首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During lytic infection, the virion host shutoff (vhs) protein of herpes simplex virus (HSV) mediates the rapid degradation of RNA and shutoff of host protein synthesis. In mice, HSV type 1 (HSV-1) mutants lacking vhs activity are profoundly attenuated. HSV-2 has significantly higher vhs activity than HSV-1, eliciting a faster and more complete shutoff. To examine further the role of vhs activity in pathogenesis, we generated an intertypic recombinant virus (KOSV2) in which the vhs open reading frame of HSV-1 strain KOS was replaced with that of HSV-2 strain 333. KOSV2 and a marker-rescued virus, KOSV2R, were characterized in cell culture and tested in an in vivo mouse eye model of latency and pathogenesis. The RNA degradation kinetics of KOSV2 was identical to that of HSV-2 333, and both showed vhs activity significantly higher than that of KOS. This demonstrated that the fast vhs-mediated degradation phenotype of 333 had been conferred upon KOS. The growth of KOSV2 was comparable to that of KOS, 333, and KOSV2R in cell culture, murine corneas, and trigeminal ganglia and had a reactivation frequency similar to those of KOS and KOSV2R from explanted latently infected trigeminal ganglia. There was, however, significantly reduced blepharitis and viral replication within the periocular skin of KOSV2-infected mice compared to mice infected with either KOS or KOSV2R. Taken together, these data demonstrate that heightened vhs activity, in the context of HSV-1 infection, leads to increased viral clearance from the skin of mice and that the replication of virus in the skin is a determining factor for blepharitis. These data also suggest a role for vhs in modulating host responses to HSV infection.  相似文献   

2.
The virion host shutoff (vhs) protein of herpes simplex virus (HSV) has endoribonuclease activity and rapidly reduces protein synthesis in infected cells through mRNA degradation. Herpes simplex virus 1 (HSV-1) and HSV-2 vhs mutants are highly attenuated in vivo, but replication and virulence are largely restored to HSV-2 vhs mutants in the absence of a type I interferon (IFN) response. The role of vhs in pathogenesis and the hindrance of the type I IFN response have classically been examined with viruses that completely lack vhs or express a truncated vhs protein. To determine whether RNase activity is the principal mechanism of vhs-mediated type I IFN resistance and virulence, we constructed a HSV-2 point mutant that synthesizes full-length vhs protein lacking RNase activity (RNase(-) virus). Wild-type and mutant HSV-2 vhs proteins coimmunoprecipitated with VP16 and VP22. vhs protein bearing the point mutation was packaged into the virion as efficiently as the wild-type vhs protein. Like a mutant encoding truncated vhs, the RNase(-) virus showed IFN-dependent replication that was restricted compared with that of the wild-type virus. The RNase(-) virus was highly attenuated in wild-type mice infected intravaginally, with reduced mucosal replication, disease severity, and spread to the nervous system comparable to those of the vhs truncation mutant. Surprisingly, in alpha/beta interferon (IFN-alpha/beta) receptor knockout mice, the vhs RNase mutant was more attenuated than the vhs truncation mutant in terms of disease severity and virus titer in vaginal swabs and central nervous system samples, suggesting that non-enzymatically active vhs protein interferes with efficient virus replication. Our results indicate that vhs enzymatic activity plays a complex role in vhs-mediated type I IFN resistance during HSV-2 infection.  相似文献   

3.
Pasieka TJ  Lu B  Leib DA 《Journal of virology》2008,82(12):6052-6055
Mice lacking the Stat1 interferon signaling gene were infected with herpes simplex virus type 1 (HSV-1) or an attenuated recombinant lacking virion host shutoff (Delta vhs). Delta vhs virus-infected Stat1(-/-) mice showed levels of replication equivalent to that of the wild-type virus-infected control mice but reduced relative to wild-type virus-infected Stat1(-/-) mice. Stat1 deficiency relieves the immunomodulatory deficiency of Delta vhs virus, but not its inherent growth defect. Also Vhs is dispensable for reactivation.  相似文献   

4.
5.
Immunization of mice with herpes simplex virus type 1 (HSV-1) mutant viruses containing deletions in the gene for virion host shutoff (vhs) protein diminishes primary and recurrent corneal infection with wild-type HSV-1. vhs mutant viruses are severely attenuated in vivo but establish latent infections in sensory neurons. A safer HSV-1 mutant vaccine strain, Delta41Delta29, has combined vhs and replication (ICP8-) deficits and protects BALB/c mice against primary corneal infection equivalent to a vhs- strain (BGS41). Here, we tested the hypothesis that Delta41Delta29 can protect as well as BGS41 in a therapeutic setting. Because immune response induction varies with the mouse and virus strains studied, we first determined the effect of prophylactic Delta41Delta29 vaccination on primary ocular infection of NIH inbred mice with HSV-1 McKrae, a model system used to evaluate therapeutic vaccines. In a dose-dependent fashion, prophylactic Delta41Delta29 vaccination decreased postchallenge tear film virus titers and ocular disease incidence and severity while eliciting high levels of HSV-specific antibodies. Adoptive transfer studies demonstrated a dominant role for immune serum and a lesser role for immune cells in mediating prophylactic protection. Therapeutically, vaccination with Delta41Delta29 effectively reduced the incidence of UV-B-induced recurrent virus shedding in latently infected mice. Therapeutic Delta41Delta29 and BGS41 vaccination decreased corneal opacity and delayed-type hypersensitivity responses while elevating antibody titers, compared to controls. These data indicate that replication is not a prerequisite for generation of therapeutic immunity by live HSV mutant virus vaccines and raise the possibility that genetically tailored replication-defective viruses may make effective and safe therapeutic vaccines.  相似文献   

6.
The herpes simplex virus transactivator VP16 and the virion host shutoff protein vhs are viral structural components that direct the activation of immediate-early gene expression and the arrest of host protein synthesis, respectively, during an infection. Recent studies show that VP16 and vhs physically interact with each other in vitro and in infected cells, suggesting that their respective regulatory functions are coupled. In this report, we used the yeast two-hybrid system and affinity chromatography with purified VP16 fusion proteins to precisely map a region in vhs that directs interaction with VP16. Deletion analysis of vhs demonstrated that a 21-amino-acid-long domain spanning residues 310 to 330 (PAAGGTEMRVSWTEILTQQIA) was sufficient for directing complex formation with VP16 in vivo and in vitro when fused to a heterologous protein. Site-directed mutagenesis of this region identified tryptophan 321 as a crucial determinant for interaction with VP16 in vitro and in vivo and additional residues that are important for stable complex formation in vitro. These findings indicate that vhs residues 310 to 330 constitute an independent and modular binding interface that is recognized by VP16.  相似文献   

7.
Potel C  Elliott G 《Journal of virology》2005,79(22):14057-14068
Herpes simplex virus VP22 is a major tegument protein of unknown function. Very recently, we reported that the predominant effect of deleting the VP22 gene was on the expression, localization, and virion incorporation of ICP0. In addition, the Delta22 virus replicated poorly in epithelial MDBK cells. We have also previously shown that VP22 interacts with the tegument protein VP16 and the cellular microtubule network. While the majority of VP22 in infected cells is highly phosphorylated, the nonphosphorylated form of VP22 is the predominant species in the virion, suggesting a differential requirement for phosphorylation through virus replication. Hence, to study the significance of VP22 phosphorylation, we have now constructed two recombinant viruses expressing green fluorescent protein-VP22 (G22) in which the previously identified serine phosphorylation sites have been mutated either to alanine to abolish the phosphorylation status of VP22 (G22P-) or to glutamic acid to mimic permanent phosphorylation (G22P+). Localization studies indicated that the G22P- protein associated tightly with microtubules in some infected cells, suggesting that VP22 phosphorylation may control its interaction with the microtubule network. By contrast, VP22 phosphorylation had no effect on its ability to interact with VP16 and, importantly, had no effect on the relative packaging of VP22. Intriguingly, virion packaging of ICP0 was reduced in the G22P+ virus while ICP0 expression was reduced in the G22P- virus, suggesting that these two ICP0 defects, previously observed in the Delta22 virus, were attributable to different forms of VP22. Furthermore, the Delta22 virus replication defect in MDBK cells correlated with the expression of constitutively charged VP22 in the G22P+ virus. Taken together, these results suggest an important role for VP22 phosphorylation in its relationship with ICP0.  相似文献   

8.
9.
Viral genes sufficient and required for herpes simplex virus type 1 (HSV-1) reactivation were identified using neuronally differentiated PC12 cells (ND-PC12 cells) in which quiescent infections with wild-type and recombinant strains were established. In this model, the expression of ICP0, VP16, and ICP4 from adenovirus vectors was sufficient to reactivate strains 17+ and KOS. The transactivators induced similar levels of reactivation with KOS; however, 17+ responded more efficiently to ICP0. To identify viral transactivators required for reactivation, we examined quiescently infected PC12 cell cultures (QIF-PC12 cell cultures) established with HSV-1 deletion mutants R7910 (ΔICP0), KD6 (ΔICP4), and in1814, a virus containing an insertion mutation in VP16. Although growth of these mutant viruses was impaired in ND-PC12 cells, R7910 and in1814 reactivated at levels equivalent to or better than their respective parental controls following stress (i.e., heat or forskolin) treatment. After treatment with trichostatin A, in1814 and 17+ reactivated efficiently, whereas the F strain and R7910 reactivated inefficiently. In contrast, KD6 failed to reactivate. In experiments with the recombinant KM100, which contains the in1814 mutation in VP16 and the n212 mutation in ICP0, spontaneous and stress-induced reactivation was observed. However, two strains, V422 and KM110, which lack the acidic activation domain of VP16, did not reactivate above low spontaneous levels after stress. These results demonstrate that in QIF-PC12 cells ICP0 is not required for efficient reactivation of HSV-1, the acidic activation domain of VP16 is essential for stress-induced HSV-1 reactivation, and HSV-1 reactivation is modulated uniquely by different treatment constraints and phenotypes.  相似文献   

10.
To generate a null U(L)49 gene mutant of herpes simplex virus 1 (HSV-1), we deleted from the viral DNA, encoded as a bacterial artificial chromosome (BAC), the U(L)49 open reading frame and, in a second step, restored it. Upon transfection into Vero cells, the BAC-DeltaU(L)49 DNA yielded foci of degenerated cells that could not be expanded and a few replication-competent clones. The replication-competent viral clones derived from independent transfections yielded viruses that expressed genes with some delay, produced smaller plaques, and gave lower yields than wild-type virus. A key finding is that the independently derived replication-competent viruses lacked the virion host shutoff (vhs) activity expressed by the RNase encoded by the U(L)41 gene. One mutant virus expressed no vhs protein, whereas two others, derived from independent transfections, produced truncated vhs proteins consistent with the spontaneous in-frame deletion. In contrast, cells infected with the virus recovered upon transfection of the BAC-U(L)49R DNA (R-U(L)49) accumulated a full-length vhs protein, indicating that in the parental BAC-DeltaU(L)49 DNA, the U(L)41 gene was intact. We conclude that expression of the vhs protein in the absence of U(L)49 protein is lethal, a conclusion bolstered by the evidence reported elsewhere that in transfected cells vhs requires both VP16 and VP22, the product of U(L)49, to be neutralized.  相似文献   

11.
The herpes simplex virus virion host shutoff function.   总被引:14,自引:11,他引:3       下载免费PDF全文
The virion host shutoff (vhs) function of herpes simplex virus (HSV) limits the expression of genes in the infected cells by destabilizing both host and viral mRNAs. vhs function mutants have been isolated which are defective in their ability to degrade host mRNA. Furthermore, the half-life of viral mRNAs is significantly longer in cells infected with the vhs-1 mutant virus than in cells infected with the wild-type (wt) virus. Recent data have shown that the vhs-1 mutation resides within the open reading frame UL41. We have analyzed the shutoff of host protein synthesis in cells infected with a mixture of the wt HSV-1 (KOS) and the vhs-1 mutant virus. The results of these experiments revealed that (i) the wt virus shutoff activity requires a threshold level of input virions per cell and (ii) the mutant vhs-1 virus protein can irreversibly block the wt virus shutoff activity. These results are consistent with a stoichiometric model in which the wt vhs protein interacts with a cellular factor which controls the half-life of cell mRNA. This wt virus interaction results in the destabilization of both host and viral mRNAs. In contrast, the mutant vhs function interacts with the cellular factor irreversibly, resulting in the increased half-life of both host and viral mRNAs.  相似文献   

12.
The virion host shutoff (vhs) gene of herpes simplex virus encodes a virion polypeptide that induces degradation of host mRNAs at early times and rapid turnover of viral mRNAs throughout infection. To better investigate the vhs function, an in vitro mRNA degradation system was developed, consisting of cytoplasmic extracts from HeLa cells infected with wild-type herpes simplex virus type 1 or a mutant encoding a defective vhs polypeptide. Host and viral mRNAs were degraded rapidly in extracts from cells productively infected with wild-type herpes simplex virus type 1 but not in extracts from mock-infected cells or cells infected with the mutant vhs1. In contrast, 28S rRNA was stable in all three kinds of extract. Accelerated turnover of host mRNAs was also observed in extracts from cells infected with wild-type virus in the presence of dactinomycin, indicating that the activity was induced by a structural component of the infecting virions. The in vitro vhs activity was inactivated by heat or proteinase K digestion but was insensitive to brief treatment of the extracts with micrococcal nuclease. It was not inhibited by placental RNase inhibitor, it exhibited a strong dependence upon added Mg2+, it was active at concentrations of K+ up to 200 mM, and it did not require the components of an energy-generating system. In summary, the in vitro mRNA degradation system appears to accurately reproduce the vhs-mediated decay of host and viral mRNAs and should be useful for studies of the mechanism of vhs action.  相似文献   

13.
The ability of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively) to repress host cell protein synthesis early in infection has been studied extensively and found to involve the activities of the UL41 gene product, the virion-associated host shutoff (vhs) protein. To date, UL41 homologs have been identified in the genomes of three other alphaherpesviruses: equine herpesvirus 1 (EHV-1), varicella-zoster virus, and pseudorabies virus, but very little is known about the putative products of these homologous genes. Our earlier observations that no rapid early host protein shutoff occurred in EHV-1-infected cells led us to test EHV-1 vhs activity more thoroughly and to examine the expression and function of the EHV-1 UL41 homolog, ORF19. In the present study, the effects of EHV-1 and HSV-1 infections on cellular protein synthesis and mRNA degradation were compared at various multiplicities of infection in several cell types under an actinomycin D block. No virion-associated inhibition of cellular protein synthesis or vhs-induced cellular mRNA degradation was detected in cells infected with any of three EHV-1 strains (Ab4, KyA, and KyD) at multiplicities of infection at which HSV-1 strain F exhibited maximal vhs activity. However, further analyses revealed that (i) the EHV-1 vhs homolog gene, ORF19, was transcribed and translated into a 58-kDa protein in infected cells; (ii) the ORF19 protein was packaged into viral particles in amounts detectable in Western blots (immunoblots) with monoclonal antibodies; (iii) in cotransfection vhs activity assays, transiently-expressed ORF19 protein had intrinsic vhs activity comparable to that of wild-type HSV-1 vhs; and (iv) this intrinsic vhs activity was ablated by in vitro site-directed mutations in which either the functionally inactive HSV-1 vhs1 UL41 mutation (Thr at position 214 replaced by Ile [Thr-214-->Ile]) was recreated within ORF19 or two conserved residues within the putative poly(A) binding region of the ORF19 sequence were altered (Tyr-190, 192-->Phe). From these results we conclude that EHV-1's low vhs activity in infected cells is not a reflection of the ORF19 protein's intrinsic vhs activity but may be due instead to the amount of ORF19 protein associated with viral particles or to modulation of ORF19 protein's intrinsic activity by another viral component(s).  相似文献   

14.
The herpes simplex virus (HSV) virion host shutoff (vhs) protein, the product of the UL41 (vhs) gene, is an important determinant of HSV virulence. vhs has been implicated in HSV interference with host antiviral immune responses, down-regulating expression of major histocompatibility complex molecules to help HSV evade host adaptive immunity. The severe attenuation of vhs-deficient viruses in vivo could reflect their inability to escape immune detection. To test this hypothesis, BALB/c or congenic SCID mice were infected intravaginally (i.vag.) with the HSV type 2 (HSV-2) vhs null mutant 333d41 or the vhs rescue virus 333d41(R). vhs-deficient virus remained severely attenuated in SCID mice compared with rescue virus, indicating that vhs regulation of adaptive immune responses does not influence HSV pathogenesis during acute infection. Innate antiviral effectors remain intact in SCID mice; prominent among these is alpha/beta interferon (IFN-alpha/beta). The attenuation of HSV-2 vhs mutants could reflect their failure to suppress IFN-alpha/beta-mediated antiviral activity. To test this hypothesis, 129 and congenic IFN-alpha/beta receptor-deficient (IFN-alpha/betaR(-/-)) mice were infected i.vag. with wild-type virus, vhs null mutants 333-vhsB or 333d41, or the vhs rescue virus 333d41(R). Whereas vhs-deficient viruses showed greatly reduced replication in the genital mucosa of 129 mice compared with wild-type or vhs rescue viruses, they were restored to nearly wild-type levels of replication in IFN-alpha/betaR(-/-) mice over the first 2 days postinfection. Only wild-type and vhs rescue viruses caused severe genital disease and hind limb paralysis in 129 mice, but infection of IFN-alpha/betaR(-/-) mice restored the virulence of vhs-deficient viruses. vhs-deficient viruses replicated as vigorously as wild-type and rescue viruses in the nervous systems of IFN-alpha/betaR(-/-) mice. Restoration was specific for the vhs mutation, because thymidine kinase-deficient HSV-2 did not regain virulence or the capacity to replicate in the nervous systems of IFN-alpha/betaR(-/-) mice. Furthermore, the defect in the IFN-alpha/beta response was required for restoration of vhs-deficient virus replication and virulence, but the IFN-alpha/beta-stimulated protein kinase R pathway was not involved. Finally, vhs of HSV-2 has a unique capacity to interfere with the IFN-alpha/beta response in vivo, because an HSV-1 vhs null mutant did not recover replication and virulence after i.vag. inoculation into IFN-alpha/betaR(-/-) mice. These results indicate that vhs plays an important role early in HSV-2 pathogenesis in vivo by interfering with the IFN-alpha/beta-mediated antiviral response.  相似文献   

15.
16.
We generated recombinant viruses in which the kinetics of expression of the leaky-late VP5 mRNA was altered. We then analyzed the effect of such alterations on viral replication in cultured cells. The VP5 promoter and leader sequences from positions -36 to +20, containing the TATA box and an initiator element, were deleted and replaced with a strong early (dUTPase), an equal-strength leaky-late (VP16), or a strict-late (U(L)38) promoter. We found that recombinant viruses containing the dUTPase promoter inserted in the VP5 locus expressed VP5-encoding mRNA with early kinetics, while virus with the U(L)38 promoter inserted expressed such mRNA with strict-late kinetics. Further, in spite of differences in its functional architecture, the VP16 promoter fully substituted for the VP5 promoter. Western blot analysis demonstrated that the amounts of VP5 capsid protein produced by the recombinant viruses differed somewhat; however, on complementing C32 and noncomplementing Vero cells, such viruses replicated to titers equivalent to those of the rescued wild-type virus controls. Multistep virus growth in mouse embryo fibroblasts, rabbit skin cells, and Vero cells also demonstrated equivalent replication efficiencies for both recombinant and wild-type viruses. Further, recombinant viruses did not show any impairment in their ability to replicate on serum-starved or quiescent human lung fibroblasts. We conclude that the kinetics of the essential VP5 mRNA expression is not critical for viral replication in cultured cells.  相似文献   

17.
Herpes simplex virus type 1 (HSV-1) induces microtubule reorganization beginning at approximately 9 h postinfection (hpi), and this correlates with the nuclear localization of the tegument protein VP22. Thus, the active retention of this major virion component by cytoskeletal structures may function to regulate its subcellular localization (A. Kotsakis, L. E. Pomeranz, A. Blouin, and J. A. Blaho, J. Virol. 75:8697-8711, 2001). The goal of this study was to determine whether the subcellular localization patterns of other HSV-1 tegument proteins are similar to that observed with VP22. To address this, we performed a series of indirect immunofluorescence analyses using synchronously infected cells. We observed that tegument proteins VP13/14, vhs, and VP16 localized to the nucleus as early as 5 hpi and were concentrated in nuclei by 9 hpi, which differed from that seen with VP22. Microtubule reorganization was delayed during infection with HSV-1(RF177), a recombinant virus that does not produce full-length VP22. These infected cells did not begin to lose microtubule-organizing centers until 13 hpi. Repair of the unique long 49 (UL49) locus in HSV-1(RF177) yielded HSV-1(RF177R). Microtubule reorganization in HSV-1(RF177R)-infected cells occurred with the same kinetics as HSV-1(F). Acetylated tubulin remained unchanged during infection with either HSV-1(F) or HSV-1(RF177). Thus, while alpha-tubulin reorganized during infection, acetylated tubulin was stable, and the absence of full-length VP22 did not affect this stability. Our findings indicate that the nuclear localizations of tegument proteins VP13/14, VP16, and vhs do not appear to require HSV-1-induced microtubule reorganization. We conclude that full-length VP22 is needed for optimal microtubule reorganization during infection. This implies that VP22 mainly functions to reorganize microtubules later, rather than earlier, in infection. That acetylated tubulin does not undergo restructuring during VP22-dependent, virus-induced microtubule reorganization suggests that it plays a role in stabilizing the infected cells. Our results emphasize that VP22 likely plays a key role in cellular cytopathology during HSV-1 infection.  相似文献   

18.
The herpes simplex virus type 1 (HSV-1) UL41 gene product, virion host shutoff (vhs), has homologs among five alphaherpesviruses (HSV-1, HSV-2, pseudorabies virus, varicella-zoster virus, and equine herpesvirus 1), suggesting a role for this protein in neurotropism. A mutant virus, termed UL41NHB, which carries a nonsense linker in the UL41 open reading frame at amino acid position 238 was generated. UL41NHB and a marker-rescued virus, UL41NHB-R, were characterized in vitro and tested for their ability to replicate in vitro and in vivo and to establish and reactivate from latency in a mouse eye model. As demonstrated by Western blotting (immunoblotting) and Northern (RNA) blotting procedures, UL41NHB encodes an appropriately truncated vhs protein and, as expected for a vhs null mutant, fails to induce the degradation of cellular glyceraldehyde-3-phosphate dehydrogenase mRNA. The growth of UL41NHB was not significantly altered in one-step growth curves in Vero or mouse C3H/10T1/2 cells but was impaired in corneas, in trigeminal ganglia, and in brains of mice compared with the growth of KOS and UL41NHB-R. As a measure of establishment of latency, quantitative DNA PCR showed that the amount of viral DNA within trigeminal ganglia latently infected with UL41NHB was reduced by approximately 30-fold compared with that in KOS-infected ganglia and by 50-fold compared with that in UL41NHB-R-infected ganglia. Explant cocultivation studies revealed a low reactivation frequency for UL41NHB (1 of 28 ganglia, or 4%) compared with that for KOS (56 of 76, or 74%) or UL41NHB-R (13 of 20 or 65%). Taken together, these results demonstrate that vhs represents a determinant of viral pathogenesis.  相似文献   

19.
The herpes simplex virus (HSV) virion host shutoff gene (vhs) encodes a protein which nonspecifically accelerates the degradation of mRNA molecules, leading to inhibition of protein synthesis. This ability to inhibit a critical cellular function suggested that vhs could be used as a suicide gene in certain gene therapy applications. To investigate whether vhs might be useful for treatment of AIDS, we tested the ability of both HSV type 1 (HSV-1) and HSV-2 vhs to inhibit replication of human immunodeficiency virus (HIV). Replication of HIV was substantially inhibited when an infectious HIV proviral clone was cotransfected into HeLa cells together with vhs under the control of the cytomegalovirus (CMV) immediate-early promoter. HSV-2 vhs was more active than HSV-1 vhs in these experiments, consistent with previously published studies on these genes. Since expression of vhs from the CMV promoter is essentially unregulated, we also tested the ability of vhs expressed from the HIV long terminal repeat (LTR) promoter to inhibit HIV replication. Wild-type HSV-1 vhs inhibited HIV replication more than 44,000-fold in comparison to a mutant vhs gene encoding a nonfunctional form of the Vhs protein. Production of Vhs in transfected cells was verified by Western blot assays. A larger amount of Vhs was observed in cells transfected with plasmids expressing vhs from the HIV LTR than from the CMV promoter, consistent with the greater inhibition of HIV replication observed with these constructs. Mutant forms of Vhs were expressed at higher levels than wild-type Vhs, most likely due to the ability of wild-type Vhs to degrade its own mRNA. The strong inhibitory activity of the vhs gene and its unique biological properties make vhs an interesting candidate for use as a suicide gene for HIV gene therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号