共查询到20条相似文献,搜索用时 0 毫秒
1.
Milena Merlo Pich Alida Castagnoli Annalisa Biondi Andrea Bernacchia Pier Luigi Tazzari Marilena D'Aurelio 《Free radical research》2013,47(4):429-436
The conditions under which Coenzyme Q (CoQ) may protect platelet mitochondrial function of transfusional buffy coats from aging and from induced oxidative stress were investigated. The Pasteur effect, i.e. the enhancement of lactate production after inhibition of mitochondrial respiratory chain, was exploited as a marker of mitochondrial function as it allows to calculate the ratio of mitochondrial ATP to glycolytic ATP. Reduced CoQ 10 improves platelet mitochondrial function of transfusional buffy coats and protects the cells from induced oxidative stress. Oxidized CoQ is usually less effective, despite the presence, shown for the first time in this study, of quinone reductase activities in the platelet plasma membranes. The addition of a CoQ reducing system to platelets is effective in enhancing the protection of platelet mitochondrial function from the oxidative stress. The results support on one hand a possibility of protection of mitochondrial function in aging by exogenous CoQ intake, on the other a possible application in protection of transfusional buffy coats from storage conditions and oxidative deterioration. 相似文献
2.
《Redox report : communications in free radical research》2013,18(1):12-19
AbstractFibromyalgia (FM) is characterized by generalized pain and chronic fatigue of unknown etiology. To evaluate the role of oxidative stress in this disorder, we measured plasma levels of ubiquinone-10, ubiquinol-10, free cholesterol (FC), cholesterol esters (CE), and free fatty acids (FFA) in patients with juvenile FM (n = 10) and in healthy control subjects (n = 67). Levels of FC and CE were significantly increased in juvenile FM as compared with controls, suggesting the presence of hypercholesterolemia in this disease. However, plasma level of ubiquinol-10 was significantly decreased and the ratio of ubiquinone-10 to total coenzyme Q10 (%CoQ10) was significantly increased in juvenile FM relative to healthy controls, suggesting that FM is associated with coenzyme Q10 deficiency and increased oxidative stress. Moreover, plasma level of FFA was significantly higher and the content of polyunsaturated fatty acids (PUFA) in total FFA was significantly lower in FM than in controls, suggesting increased tissue oxidative damage in juvenile FM. Interestingly, the content of monoenoic acids, such as oleic and palmitoleic acids, was significantly increased in FM relative to controls, probably to compensate for the loss of PUFA. Next, we examined the effect of ubiquinol-10 supplementation (100 mg/day for 12 weeks) in FM patients. This resulted in an increase in coenzyme Q10 levels and a decrease in %CoQ10. No changes were observed in FFA levels or their composition. However, plasma levels of FC and CE significantly decreased and the ratio of FC to CE also significantly decreased, suggesting that ubiquinol-10 supplementation improved cholesterol metabolism. Ubiquinol-10 supplementation also improved chronic fatigue scores as measured by the Chalder Fatigue Scale. 相似文献
3.
Objective
Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats.Methods
Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM + CoQ10 and Group 5 as GM + BFT for 8 days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed.Results
Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM + BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM + CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli.Conclusion
The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells. 相似文献4.
Beth Marbois Peter Gin Melissa Gulmezian Catherine F. Clarke 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(1):69-75
Coenzyme Q is a redox active lipid essential for aerobic respiration. The Coq4 polypeptide is required for Q biosynthesis and growth on non-fermentable carbon sources, however its exact function in this pathway is not known. Here we probe the functional roles of Coq4p in a yeast Q biosynthetic polypeptide complex. A yeast coq4-1 mutant harboring an E226K substitution is unable to grow on nonfermentable carbon sources. The coq4-1 yeast mutant retains significant Coq3p O-methyltransferase activity, and mitochondria isolated from coq4-1 and coq4-2 (E121K) yeast point mutants contain normal steady state levels of Coq polypeptides, unlike the decreased levels of Coq polypeptides generally found in strains harboring coq gene deletions. Digitonin-solubilized mitochondrial extracts prepared from yeast coq4 point mutants show that Coq3p and Coq4 polypeptides no longer co-migrate as high molecular mass complexes by one- and two-dimensional Blue Native-PAGE. Similarly, gel filtration chromatography confirms that O-methyltransferase activity, Coq3p, Coq4p, and Coq7p migration are disorganized in the coq4-1 mutant mitochondria. The data suggest that Coq4p plays an essential role in organizing a Coq enzyme complex required for Q biosynthesis. 相似文献
5.
G. Lenaz Carla Bovina Cinzia Castelluccio Marika Cavazzoni E. Estornell Romana Fato J. R. Huertas Milena Merlo Pich F. Pallotti Giovanna Parenti Castelli Hana Rauchova 《Protoplasma》1995,184(1-4):50-62
Summary In the mitochondrial respiratory chain, coenzyme Q acts in different ways. A diffusable coenzyme Q pool as a common substrate-like intermediate links the low-potential complexes with complex III. Its diffusion in the lipids is not rate-limiting for electron transfer, but its content is not saturating for maximal rate of NADH oxidation. Protein-bound coenzyme Q is involved in energy conservation, and may be part of enzyme supercomplexes, as in succinate cytochromec reductase. The reason for lack of kinetic saturation of the respiratory chain by quinone concentration is in the low extent of solubility of monomeric coenzyme Q in the membrane lipids. Assays of respiratory enzymes are performed using water soluble coenzyme Q homologs and analogs; several problems exist in using oxidized quinones as acceptors of coenzyme Q reductases. In particular, for complex I no acceptor appears to favorably substitute the endogenous quinone. In addition, quinone reduction sites in complex III compete with the sites in the dehydrogenases, particularly when using duroquinone. The different extent by which these sites operate when different donor substrates (NADH, succinate, glycerol-3-phosphate) are used is best explained by different exposure of the quinone acceptor sites in the dehydrogenases. 相似文献
6.
Robert E. Beyer 《Free radical biology & medicine》1988,5(5-6):297-303
The ability of coenzyme Q to inhibit lipid peroxidation in intact animals as well as in mitochondrial, submitochondrial, and microsomal systems has been tested. Rats fed coenzyme Q prior to being treated with carbon tetrachloride or while being treated with ethanol excrete less thiobarbituric acid-reacting material in the urine than such rats not fed coenzyme Q. Liver homogenates, mitochondria, and microsomes isolated from rats treated with carbon tetrachloride and ethanol catalyze lipid peroxidation at rates which exceed those from animals also fed coenzyme Q. The rate of lipid peroxidation catalyzed by submitochondrial particles isolated from hearts of young, old, and endurance trained elderly rats was inversely proportional to the coenzyme Q content of the submitochondrial preparation in assays in which succinate was employed to reduce the endogenous coenzyme Q. Reduced, but not oxidized, coenzyme Q inhibited lipid peroxidation catalyzed by rat liver microsomal preparations. These results provide additional evidence in support of an antioxidant role for coenzyme Q. 相似文献
7.
Raúl González Gustavo Ferrín Ana B. Hidalgo Pedro López-Cillero Mónica Santos-Gónzalez Javier Briceño Miguel A. Gómez José M. Villalba Manuel de la Mata Jordi Muntané 《Chemico-biological interactions》2009,181(1):95-755
d-Galactosamine (d-GalN) induces reactive oxygen species (ROS) generation and cell death in cultured hepatocytes. The aim of the study was to evaluate the cytoprotective properties of N-acetylcysteine (NAC), coenzyme Q10 (Q10) and the superoxide dismutase (SOD) mimetic against the mitochondrial dysfunction and cell death in d-GalN-treated hepatocytes. Hepatocytes were isolated from liver resections. NAC (0.5 mM), Q10 (30 μM) or MnTBAP (Mn(III)tetrakis(4-benzoic acid) porphyrin chloride (1 mg/mL) were co-administered with d-GalN (40 mM) in hepatocytes. Cell death, oxidative stress, mitochondrial transmembrane potential (MTP), ATP, mitochondrial oxidized/reduced glutathione (GSH) and Q10 ratios, electronic transport chain (ETC) activity, and nuclear- and mitochondria-encoded expression of complex I subunits were determined in hepatocytes. d-GalN induced a transient increase of mitochondrial hyperpolarization and oxidative stress, followed by an increase of oxidized/reduced GSH and Q10 ratios, mitochondrial dysfunction and cell death in hepatocytes. The cytoprotective properties of NAC supplementation were related to a reduction of ROS generation and oxidized/reduced GSH and Q10 ratios, and a recovery of mitochondrial complexes I + III and II + III activities and cellular ATP content. The co-administration of Q10 or MnTBAP recovered oxidized/reduced GSH ratio, and reduced ROS generation, ETC dysfunction and cell death induced by d-GalN. The cytoprotective properties of studied antioxidants were related to an increase of the protein expression of nuclear- and mitochondrial-encoded subunits of complex I. In conclusion, the co-administration of NAC, Q10 and MnTBAP enhanced the expression of complex I subunits, and reduced ROS production, oxidized/reduced GSH ratio, mitochondrial dysfunction and cell death induced by d-GalN in cultured hepatocytes. 相似文献
8.
Y H Noh K-Y Kim M S Shim S-H Choi S Choi M H Ellisman R N Weinreb G A Perkins W-K Ju 《Cell death & disease》2013,4(10):e820
Oxidative stress contributes to dysfunction of glial cells in the optic nerve head (ONH). However, the biological basis of the precise functional role of mitochondria in this dysfunction is not fully understood. Coenzyme Q10 (CoQ10), an essential cofactor of the electron transport chain and a potent antioxidant, acts by scavenging reactive oxygen species (ROS) for protecting neuronal cells against oxidative stress in many neurodegenerative diseases. Here, we tested whether hydrogen peroxide (100 μM H2O2)-induced oxidative stress alters the mitochondrial network, oxidative phosphorylation (OXPHOS) complex (Cx) expression and bioenergetics, as well as whether CoQ10 can ameliorate oxidative stress-mediated alterations in mitochondria of the ONH astrocytes in vitro. Oxidative stress triggered the activation of ONH astrocytes and the upregulation of superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) protein expression in the ONH astrocytes. In contrast, CoQ10 not only prevented activation of ONH astrocytes but also significantly decreased SOD2 and HO-1 protein expression in the ONH astrocytes against oxidative stress. Further, CoQ10 prevented a significant loss of mitochondrial mass by increasing mitochondrial number and volume density and by preserving mitochondrial cristae structure, as well as promoted mitofilin and peroxisome-proliferator-activated receptor-γ coactivator-1 protein expression in the ONH astrocyte, suggesting an induction of mitochondrial biogenesis. Finally, oxidative stress triggered the upregulation of OXPHOS Cx protein expression, as well as reduction of cellular adeonsine triphosphate (ATP) production and increase of ROS generation in the ONH astocytes. However, CoQ10 preserved OXPHOS protein expression and cellular ATP production, as well as decreased ROS generation in the ONH astrocytes. On the basis of these observations, we suggest that oxidative stress-mediated mitochondrial dysfunction or alteration may be an important pathophysiological mechanism in the dysfunction of ONH astrocytes. CoQ10 may provide new therapeutic potentials and strategies for protecting ONH astrocytes against oxidative stress-mediated mitochondrial dysfunction or alteration in glaucoma and other optic neuropathies. 相似文献
9.
Compelling evidence shows a strong correlation between accumulation of neurotoxic β-amyloid (Aβ) peptides and oxidative stress in the brains of patients afflicted with Alzheimer disease (AD). One hypothesis for this correlation involves the direct and harmful interaction of aggregated Aβ peptides with enzymes responsible for maintaining normal, cellular levels of reactive oxygen species (ROS). Identification of specific, destructive interactions of Aβ peptides with cellular anti-oxidant enzymes would represent an important step toward understanding the pathogenicity of Aβ peptides in AD. This report demonstrates that exposure of human neuroblastoma cells to cytotoxic preparations of aggregated Aβ peptides results in significant intracellular co-localization of Aβ with catalase, an anti-oxidant enzyme responsible for catalyzing the degradation of the ROS intermediate hydrogen peroxide (H(2)O(2)). These catalase-Aβ interactions deactivate catalase, resulting in increased cellular levels of H(2)O(2). Furthermore, small molecule inhibitors of catalase-amyloid interactions protect the hydrogen peroxide-degrading activity of catalase in Aβ-rich environments, leading to reduction of the co-localization of catalase and Aβ in cells, inhibition of Aβ-induced increases in cellular levels of H(2)O(2), and reduction of the toxicity of Aβ peptides. These studies, thus, provide evidence for the important role of intracellular catalase-amyloid interactions in Aβ-induced oxidative stress and propose a novel molecular strategy to inhibit such harmful interactions in AD. 相似文献
10.
Hsieh EJ Gin P Gulmezian M Tran UC Saiki R Marbois BN Clarke CF 《Archives of biochemistry and biophysics》2007,463(1):19-26
Coenzyme Q (Q) is a redox active lipid that is an essential component of the electron transport chain. Here, we show that steady state levels of Coq3, Coq4, Coq6, Coq7 and Coq9 polypeptides in yeast mitochondria are dependent on the expression of each of the other COQ genes. Submitochondrial localization studies indicate Coq9p is a peripheral membrane protein on the matrix side of the mitochondrial inner membrane. To investigate whether Coq9p is a component of a complex of Q-biosynthetic proteins, the native molecular mass of Coq9p was determined by Blue Native-PAGE. Coq9p was found to co-migrate with Coq3p and Coq4p at a molecular mass of approximately 1 MDa. A direct physical interaction was shown by the immunoprecipitation of HA-tagged Coq9 polypeptide with Coq4p, Coq5p, Coq6p and Coq7p. These findings, together with other work identifying Coq3p and Coq4p interactions, identify at least six Coq polypeptides in a multi-subunit Q biosynthetic complex. 相似文献
11.
We investigated the effects of ursodeoxycholic acid (UDCA) on mitochondrial functions and oxidative stress and evaluated their relationships in the livers of rats with alloxan-induced diabetes. Diabetes was induced in male Wistar rats by a single alloxan injection (150 mg kg− 1 b.w., i.p.). UDCA (40 mg kg− 1 b.w., i.g., 30 days) was administered from the 5th day after the alloxan treatment. Mitochondrial functions were evaluated by oxygen consumption with Clark oxygen electrode using succinate, pyruvate + malate or palmitoyl carnitine as substrates and by determination of succinate dehydrogenase and NADH dehydrogenase activities. Liver mitochondria were used to measure chemiluminiscence enhanced by luminol and lucigenin, reduced liver glutathione and the end-products of lipid peroxidation. The activities of both NADH dehydrogenase and succinate dehydrogenase as well as the respiratory control (RC) value with all the substrates and the ADP/O ratio with pyruvate + malate and succinate as substrates were significantly decreased in diabetic rats. UDCA developed the beneficial effect on the mitochondrial respiration and oxidative phosphorylation parameters in alloxan-treated rats, whereas the activities of mitochondrial enzymes were increased insignificantly after the administration of UDCA. The contents of polar carbonyls and MDA as well as the chemiluminescence with luminol were elevated in liver mitochondria of diabetic rats. The treatment with UDCA normalized all the above parameters measured except the MDA content. UDCA administration prevents mitochondrial dysfunction in rats treated with alloxan and this process is closely connected with inhibition of oxidative stress by this compound. 相似文献
12.
13.
Mordhwaj S. Parihar Arti Parihar Masayo Fujita Makoto Hashimoto Pedram Ghafourifar 《The international journal of biochemistry & cell biology》2009,41(10):2015-2024
Overexpression of alpha-synuclein and oxidative stress has been implicated in the neuronal cell death in Parkinson's disease. Alpha-synuclein associates with mitochondria and excessive accumulation of alpha-synuclein causes impairment of mitochondrial functions. However, the mechanism of mitochondrial impairment caused by alpha-synuclein is not fully understood. We recently reported that alpha-synuclein associates with mitochondria and that overexpression of alpha-synuclein causes nitration of mitochondrial proteins and release of cytochrome c from the mitochondria [Parihar M.S., Parihar A., Fujita M., Hashimoto M., Ghafourifar P. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 2008a;65:1272–1284]. The present study shows that overexpression of alpha-synuclein A53T or A30P mutants or wild-type in human neuroblastoma cells augmented aggregation of alpha-synuclein. Immunoblotting and immuno-gold electron transmission microscopy show localization of alpha-synuclein aggregates within the mitochondria of overexpressing cells. Overexpressing cells show increased mitochondrial reactive oxygen species, increased protein tyrosine nitration, decreased mitochondrial transmembrane potential, and hampered cellular respiration. These findings suggest an important role for mitochondria in cellular responses to alpha-synuclein. 相似文献
14.
Candida parapsilosis mitochondria contain three respiratory chains: the classical respiratory chain (CRC), a secondary parallel chain (PAR) and an “alternative” oxidative pathway (AOX). We report here the existence of similar pathways in C. albicans. To observe the capacity of each pathway to sustain yeast growth, C. albicans cells were cultured in the presence of inhibitors of these pathways. Antimycin A and KCN totally abrogated yeast growth, while rotenone did not prevent proliferation. Furthermore, rotenone promoted only partial respiratory inhibition. Lower concentrations of KCN that promote partial inhibition of respiration did not inhibit yeast growth, while partial inhibition of respiration with antimycin A did. Similarly, AOX inhibitor BHAM decreased O2 consumption slightly but completely stunted cell growth. Reactive oxygen species production and oxidized glutathione levels were enhanced in cells treated with antimycin A or BHAM, but not rotenone or KCN. These findings suggest that oxidative stress prevents C. albicans growth. 相似文献
15.
Andrey Tikunov Peter Pediaditakis Nikolai Markevich John J. Lemasters 《Archives of biochemistry and biophysics》2010,495(2):174-3385
The electron transport chain of mitochondria is a major source of reactive oxygen species (ROS), which play a critical role in augmenting the Ca2+-induced mitochondrial permeability transition (MPT). Mitochondrial release of superoxide anions (O2−) from the intermembrane space (IMS) to the cytosol is mediated by voltage dependent anion channels (VDAC) in the outer membrane. Here, we examined whether closure of VDAC increases intramitochondrial oxidative stress by blocking efflux of O2− from the IMS and sensitizing to the Ca2+-induced MPT. Treatment of isolated rat liver mitochondria with 5 μM G3139, an 18-mer phosphorothioate blocker of VDAC, accelerated onset of the MPT by 6.8 ± 1.4 min within a range of 100-250 μM Ca2+. G3139-mediated acceleration of the MPT was reversed by 20 μM butylated hydroxytoluene, a water soluble antioxidant. Pre-treatment of mitochondria with G3139 also increased accumulation of O2− in mitochondria, as monitored by dihydroethidium fluorescence, and permeabilization of the mitochondrial outer membrane with digitonin reversed the effect of G3139 on O2− accumulation. Mathematical modeling of generation and turnover of O2− within the IMS indicated that closure of VDAC produces a 1.55-fold increase in the steady-state level of mitochondrial O2−. In conclusion, closure of VDAC appears to impede the efflux of superoxide anions from the IMS, resulting in an increased steady-state level of O2−, which causes an internal oxidative stress and sensitizes mitochondria toward the Ca2+-induced MPT. 相似文献
16.
Influence of carbohydrate ingestion on oxidative stress and plasma antioxidant potential following a 3 h run 总被引:1,自引:0,他引:1
McAnulty SR McAnulty LS Nieman DC Morrow JD Utter AC Henson DA Dumke CL Vinci DM 《Free radical research》2003,37(8):835-840
Concentrations of reactive oxygen species (ROS) increase during exercise secondary to increased oxygen uptake, xanthine oxidase activity, and immune system activation. Carbohydrate compared to placebo beverage ingestion is associated with an attenuated cortisol and catecholamine response. Catecholamines can undergo autooxidation to form ROS. We hypothesized that during intense exercise, ingestion of carbohydrate compared to placebo would diminish oxidative stress. Sixteen experienced marathoners ran on treadmills for 3 h at ∼70% VO
2maxon two occasions while receiving carbohydrate or placebo beverages (1 l/h, double-blinded) in a randomized, counterbalanced order. Blood samples were collected before and immediately after exercise, snap frozen in liquid nitrogen, and stored at -80°C until analysis. Plasma samples were analyzed for F2-isoprostanes (FIP) and lipid hydroperoxides (ROOH) as measures for lipid peroxidation, ferric reducing ability of plasma (FRAP) as a measure of plasma antioxidant potential and for cortisol. The pattern of change in cortisol was significantly different between carbohydrate and placebo conditions (P=0.024), with post-exercise levels higher in the placebo condition. Under both carbohydrate and placebo conditions, significant increases in FIP, ROOH, and FRAP were measured, but the pattern of increase was not different (FIP, interaction effect, P=0.472; ROOH, P=0.572; FRAP, P=0.668). Despite an attenuation in the cortisol response, carbohydrate compared to placebo ingestion does not counter the increase in oxidative stress or modulate plasma antioxidant potential in athletes running 3 h at 70% VO
2max. 相似文献
17.
The respiratory quinone composition of the obligate methane-utilizing bacterium Methylomonas rubra was examined. A single lipoquinone was isolated which on examination by thin-layer chromatography cochromatographed with coenzyme Q. Reverse-phase partition and argentation high performance liquid chromatography demonstrated the lipoquinone did not correspond to any known coenzyme Q prenologue. On the basis of mass spectrometry and proton nuclear magnetic resonance spectrometry the novel lipoquinone was shown to correspond to 2,3-dimethoxy-5-methyl-6-(11-methylene-3,7,15, 18, 18, 19, 23-heptamethyltetracosa-2, 6, 14, 19, 22-pentaenyl-)-1,4-benzoquinone. 相似文献
18.
Ermak G Sojitra S Yin F Cadenas E Cuervo AM Davies KJ 《The Journal of biological chemistry》2012,287(17):14088-14098
Expression of the RCAN1 gene can be induced by multiple stresses. RCAN1 proteins (RCAN1s) have both protective and harmful effects and are implicated in common human pathologies. The mechanisms by which RCAN1s function, however, remain poorly understood. We identify RCAN1s as regulators of mitochondrial autophagy (mitophagy) and demonstrate that induction of RCAN1-1L can cause dramatic degradation of mitochondria. The mechanisms of such degradation involve the adenine nucleotide translocator and mitochondrial permeability transition pore opening. We also demonstrate that RCAN1-1L induction can shift cellular bioenergetics from aerobic respiration to glycolysis, yet RCAN1-1L has very little effect on cell division, whereas it has a cumulative negative effect on cell survival. These results shed the light on mechanisms by which RCAN1s can protect or harm cells and by which they may operate in human pathologies. They also suggest that RCAN1s are important players in autophagy and such elusive phenomena as the mitochondrial permeability transition pore. 相似文献
19.
Markus Schwarzländer 《BBA》2009,1787(5):468-475
In animals, the impact of ROS production by mitochondria on cell physiology, death, disease and ageing is well recognised. In photosynthetic organisms such as higher plants, however, the chloroplast and peroxisomes are the major sources of ROS during normal metabolism and the importance of mitochondria in oxidative stress and redox signalling is less well established. To address this, the in vivo oxidation state of a mitochondrially-targeted redox-sensitive GFP (mt-roGFP2) was investigated in Arabidopsis leaves. Classical ROS-generating inhibitors of mitochondrial electron transport (rotenone, antimycin A and SHAM) had no effect on mt-roGFP oxidation when used singly, but combined inhibition of complex III and alternative oxidase by antimycin A and SHAM did cause significant oxidation. Inhibitors of complex IV and aconitase also caused oxidation of mt-roGFP2. This oxidation was not apparent in the cytosol whereas antimycin A + SHAM also caused oxidation of cytosolic roGFP2. Menadione had a much greater effect than the inhibitors, causing nearly complete oxidation of roGFP2 in both mitochondria and cytosol. A range of severe abiotic stress treatments (heat, salt, and heavy metal stress) led to oxidation of mt-roGFP2 while hyperosmotic stress had no effect and low temperature caused a slight but significant decrease in oxidation. Similar changes were observed for cytosolic roGFP2. Finally, the recovery of oxidation state of roGFP in mitochondria after oxidation by H2O2 treatment was dramatically slower than that of either the cytosol or chloroplast. Together, the results highlight the sensitivity of the mitochondrion to redox perturbation and suggest a potential role in sensing and signalling cellular redox challenge. 相似文献
20.
Masgras I Carrera S de Verdier PJ Brennan P Majid A Makhtar W Tulchinsky E Jones GD Roninson IB Macip S 《The Journal of biological chemistry》2012,287(13):9845-9854
p21(Waf1/Cip1/Sdi1) is a cyclin-dependent kinase inhibitor that mediates cell cycle arrest. Prolonged p21 up-regulation induces a senescent phenotype in normal and cancer cells, accompanied by an increase in intracellular reactive oxygen species (ROS). However, it has been shown recently that p21 expression can also lead to cell death in certain models. The mechanisms involved in this process are not fully understood. Here, we describe an induction of apoptosis by p21 in sarcoma cell lines that is p53-independent and can be ameliorated with antioxidants. Similar levels of p21 and ROS caused senescence in the absence of significant death in other cancer cell lines, suggesting a cell-specific response. We also found that cells undergoing p21-dependent cell death had higher sensitivity to oxidants and a specific pattern of mitochondrial polarization changes. Consistent with this, apoptosis could be blocked with targeted expression of catalase in the mitochondria of these cells. We propose that the balance between cancer cell death and arrest after p21 up-regulation depends on the specific effects of p21-induced ROS on the mitochondria. This suggests that selective up-regulation of p21 in cancer cells could be a successful therapeutic intervention for sarcomas and tumors with lower resistance to mitochondrial oxidative damage, regardless of p53 status. 相似文献