首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eph–ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph–ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph–ephrin complexes. Analysis of the Eph–ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph–ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein–protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph–ephrin complex.  相似文献   

2.
Ephrin (Eph) receptor tyrosine kinases fall into two subclasses (A and B) according to preferences for their ephrin ligands. All published structural studies of Eph receptor/ephrin complexes involve B‐class receptors. Here, we present the crystal structures of an A‐class complex between EphA2 and ephrin‐A1 and of unbound EphA2. Although these structures are similar overall to their B‐class counterparts, they reveal important differences that define subclass specificity. The structures suggest that the A‐class Eph receptor/ephrin interactions involve smaller rearrangements in the interacting partners, better described by a ‘lock‐and‐key’‐type binding mechanism, in contrast to the ‘induced fit’ mechanism defining the B‐class molecules. This model is supported by structure‐based mutagenesis and by differential requirements for ligand oligomerization by the two subclasses in cell‐based Eph receptor activation assays. Finally, the structure of the unligated receptor reveals a homodimer assembly that might represent EphA2‐specific homotypic cell adhesion interactions.  相似文献   

3.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

4.
5.
6.
The Eph receptor tyrosine kinase family includes many members, which are often expressed together in various combinations and can promiscuously interact with multiple ephrin ligands, generating intricate networks of intracellular signals that control physiological and pathological processes. Knowing the entire repertoire of Eph receptors and ephrins expressed in a biological sample is important when studying their biological roles. Moreover, given the correlation between Eph receptor/ephrin expression and cancer pathogenesis, their expression patterns could serve important diagnostic and prognostic purposes. However, profiling Eph receptor and ephrin expression has been challenging. Here we describe a novel and straightforward approach to catalog the Eph receptors present in cultured cells and tissues. By measuring the binding of ephrin Fc fusion proteins to Eph receptors in ELISA and pull-down assays, we determined that a mixture of four ephrins is suitable for isolating both EphA and EphB receptors in a single pull-down. We then used mass spectrometry to identify the Eph receptors present in the pull-downs and estimate their relative levels. This approach was validated in cultured human cancer cell lines, human tumor xenograft tissue grown in mice, and mouse brain tissue. The new mass spectrometry approach we have developed represents a useful tool for the identification of the spectrum of Eph receptors present in a biological sample and could also be extended to profiling ephrin expression.  相似文献   

7.
Eph receptors comprise the largest known family of receptor tyrosine kinases in mammals. They bind members of a second family, the ephrins. As both Eph receptors and ephrins are membrane bound, interactions permit unusual bidirectional cell–cell signaling. Eph receptors and ephrins each form two classes, A and B, based on sequences, structures, and patterns of affinity: Class A Eph receptors bind class A ephrins, and class B Eph receptors bind class B ephrins. The only known exceptions are the receptor EphA4, which can bind ephrinB2 and ephrinB3 in addition to the ephrin‐As (Bowden et al., Structure 2009;17:1386–1397); and EphB2, which can bind ephrin‐A5 in addition to the ephrin‐Bs (Himanen et al., Nat Neurosci 2004;7:501–509). A crystal structure is available of the interacting domains of the EphA4‐ephrin B2 complex (wwPDB entry 2WO2) (Bowden et al., Structure 2009;17:1386–1397). In this complex, the ligand‐binding domain of EphA4 adopts an EphB‐like conformation. To understand why other cross‐class EphA receptor–ephrinB complexes do not form, we modeled hypothetical complexes between (1) EphA4–ephrinB1, (2) EphA4–ephrinB3, and (3) EphA2–ephrinB2. We identify particular residues in the interface region, the size variations of which cause steric clashes that prevent formation of the unobserved complexes. The sizes of the sidechains of residues at these positions correlate with the pattern of binding affinity. Proteins 2014; 82:349–353. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Eph receptors, the largest subfamily of receptor tyrosine kinases (RTKs), and their ephrin ligands are important mediators of cell-cell communication that regulate axon guidance, long-term potentiation, and stem cell development, among others. By now, many Eph receptors and ephrins have also been found to play important roles in the progression of cancer. Since both the receptor and the ligand are membrane-bound, their interaction leads to the multimerization of both molecules to distinct clusters within their respective plasma membranes, resulting in the formation of discrete signaling centers. In addition, and unique to Eph receptors and ephrins, their interaction initiates bi-directional signaling cascades where information is transduced in the direction of both the receptor- and the ligand-bearing cells. The Ephs and the ephrins are divided into two subclasses, A and B, based on their affinities for each other and on sequence conservation. Crystal structures and other biophysical studies have indicated that isolated extracellular Eph and ephrin domains initially form high-affinity heterodimers around a hydrophobic loop of the ligand that is buried in a hydrophobic pocket on the surface of the receptor. The dimers can then further arrange by weaker interactions into higher-order Eph/ephrin clusters observed in vivo at the sites of cell-cell contact. Although the hetero-dimerization is a universal way to initiate signaling, other extracellular domains of Ephs are involved in the formation of higher-order clusters. The structures also show important differences defining the unique partner preferences of the two ligand and receptor subclasses, namely, how subclass specificity is determined both by individual interacting residues and by the precise architectural arrangement of ligands and receptors within the complexes.  相似文献   

9.
Eph receptor tyrosine kinases and their membrane-associated ligands, the ephrins, are essential regulators of axon guidance, cell migration, segmentation, and angiogenesis. There are two classes of vertebrate ephrin ligands which have distinct binding specificities for their cognate receptors. Multimerization of the ligands is required for receptor activation, and ephrin ligands themselves signal intracellularly upon binding Eph receptors. We have determined the structure of the extracellular domain of mouse ephrin-B2. The ephrin ectodomain is an eight-stranded beta barrel with topological similarity to plant nodulins and phytocyanins. Based on the structure, we have identified potential surface determinants of Eph/ephrin binding specificity and a ligand dimerization region. The high sequence similarity among ephrin ectodomains indicates that all ephrins may be modeled upon the ephrin-B2 structure presented here.  相似文献   

10.
Eph receptors and ephrins play important roles in regulating cell migration and positioning during both normal and oncogenic tissue development. Using a surface plasma resonance (SPR) biosensor, we examined the binding kinetics of representative monomeric and dimeric ephrins to their corresponding Eph receptors and correlated the apparent binding affinity with their functional activity in a neuronal growth cone collapse assay. Our results indicate that the Eph receptor binding of dimeric ephrins, formed through fusion with disulfide-linked Fc fragments, is best described using a bivalent analyte model as a two-step process involving an initial monovalent 2:1 binding followed by a second bivalent 2:2 binding. The bivalent binding dramatically decreases the apparent dissociation rate constants with little effect on the initial association rate constants, resulting in a 30- to 6000-fold decrease in apparent equilibrium dissociation constants for the binding of dimeric ephrins to Eph receptors relative to their monomeric counterparts. Interestingly, the change was more prominent in the A-class ephrin/Eph interactions than in the B-class of ephrins to Eph receptors. The increase in apparent binding affinities correlated well with increased activation of Eph receptors and the resulting growth cone collapse. Our kinetic analysis and correlation of binding affinity with function helped us better understand the interactions between ephrins and Eph receptors and should be useful in the design of inhibitors that interfere with the interactions.  相似文献   

11.
The mechanisms generating precise connections between specific thalamic nuclei and cortical areas remain poorly understood. Using axon tracing analysis of ephrin/Eph mutant mice, we provide in vivo evidence that Eph receptors in the thalamus and ephrins in the cortex control intra-areal topographic mapping of thalamocortical (TC) axons. In addition, we show that the same ephrin/Eph genes unexpectedly control the inter-areal specificity of TC projections through the early topographic sorting of TC axons in an intermediate target, the ventral telencephalon. Our results constitute the first identification of guidance cues involved in inter-areal specificity of TC projections and demonstrate that the same set of mapping labels is used differentially for the generation of topographic specificity of TC projections between and within individual cortical areas.  相似文献   

12.
13.
Eph receptors and their cell membrane-bound ephrin ligands regulate cell positioning and thereby establish or stabilize patterns of cellular organization. Although it is recognized that ephrin clustering is essential for Eph function, mechanisms that relay information of ephrin density into cell biological responses are poorly understood. We demonstrate by confocal time-lapse and fluorescence resonance energy transfer microscopy that within minutes of binding ephrin-A5-coated beads, EphA3 receptors assemble into large clusters. While remaining positioned around the site of ephrin contact, Eph clusters exceed the size of the interacting ephrin surface severalfold. EphA3 mutants with compromised ephrin-binding capacity, which alone are incapable of cluster formation or phosphorylation, are recruited effectively and become phosphorylated when coexpressed with a functional receptor. Our findings reveal consecutive initiation of ephrin-facilitated Eph clustering and cluster propagation, the latter of which is independent of ephrin contacts and cytosolic Eph signaling functions but involves direct Eph-Eph interactions.  相似文献   

14.
The Eph family of receptor tyrosine kinases has been implicated in tumorigenesis as well as pathological forms of angiogenesis. Understanding how to modulate the interaction of Eph receptors with their ephrin ligands is therefore of critical interest for the development of therapeutics to treat cancer. Previous work identified a set of 12-mer peptides that displayed moderate binding affinity but high selectivity for the EphB2 receptor. The SNEW antagonistic peptide inhibited the interaction of EphB2 with ephrinB2, with an IC50 of approximately 15 microm. To gain a better molecular understanding of how to inhibit Eph/ephrin binding, we determined the crystal structure of the EphB2 receptor in complex with the SNEW peptide to 2.3-A resolution. The peptide binds in the hydrophobic ligand-binding cleft of the EphB2 receptor, thus competing with the ephrin ligand for receptor binding. However, the binding interactions of the SNEW peptide are markedly different from those described for the TNYL-RAW peptide, which binds to the ligand-binding cleft of EphB4, indicating a novel mode of antagonism. Nevertheless, we identified a conserved structural motif present in all known receptor/ligand interfaces, which may serve as a scaffold for the development of therapeutic leads. The EphB2-SNEW complex crystallized as a homodimer, and the residues involved in the dimerization interface are similar to those implicated in mediating tetramerization of EphB2-ephrinB2 complexes. The structure of EphB2 in complex with the SNEW peptide reveals novel binding determinants that could serve as starting points in the development of compounds that modulate Eph receptor/ephrin interactions and biological activities.  相似文献   

15.
The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition.  相似文献   

16.
In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands.  相似文献   

17.
18.
Eph receptor tyrosine kinases mediate cell-cell communication by interacting with ephrin ligands residing on adjacent cell surfaces. In doing so, these juxtamembrane signaling complexes provide important contextual information about the cellular microenvironment that helps orchestrate tissue morphogenesis and maintain homeostasis. Eph/ephrin signaling has been implicated in various aspects of mammalian skin physiology, with several members of this large family of receptor tyrosine kinases and their ligands present in the epidermis, hair follicles, sebaceous glands, and underlying dermis. This review focuses on the emerging role of Eph receptors and ephrins in epidermal keratinocytes where they can modulate proliferation, migration, differentiation, and death. The activation of Eph receptors by ephrins at sites of cell-cell contact also appears to play a key role in the maturation of intercellular junctional complexes as keratinocytes move out of the basal layer and differentiate in the suprabasal layers of this stratified, squamous epithelium. Furthermore, alterations in the epidermal Eph/ephrin axis have been associated with cutaneous malignancy, wound healing defects and inflammatory skin conditions. These collective observations suggest that the Eph/ephrin cell-cell communication pathway may be amenable to therapeutic intervention for the purpose of restoring epidermal tissue homeostasis and integrity in dermatological disorders.  相似文献   

19.
20.
The ephrins and Eph receptors in angiogenesis.   总被引:26,自引:0,他引:26  
Eph receptors are a unique family of receptor tyrosine kinases that play critical roles in embryonic patterning, neuronal targeting, vascular development and adult neovascularization. Engagement of Eph receptors by ephrin ligands mediates critical steps of angiogenesis, including juxtacrine cell-cell contacts, cell adhesion to extracellular matrix, and cell migration. Recent evidence from in vitro angiogenesis assays and analysis of mice deficient for one or more members of the Eph family establishes the role of Eph signaling in sprouting angiogenesis and blood vessel remodeling during vascular development. Furthermore, elevated expression of Eph receptors and ephrin ligands is associated with tumors and associated tumor vasculature, suggesting that Eph receptors and their ephrin ligands also play critical roles in tumor angiogenesis and tumor growth. This review will focus on the relevance of Eph receptor signaling in embryonic and adult neovascularization, and possible contributions to tumor growth and metastasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号