首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments (“side-attached”) or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm) could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10–50 streptavidin molecules, 1–10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy.  相似文献   

2.
This study shows that there is only a negligible difference in actomyosin function in the in vitro motility assay among actin filaments labeled with Rhodamine phalloidin (RhPh), Alexa-488 phalloidin (APh), and biotin-XX phalloidin (BPh). Similar results were obtained at varying ionic strengths (0.02-0.13 M), in the presence of imidazole or 3-[N-morpholino]propanesulfonic acid (MOPS) buffer, and at varying MgATP concentrations (0.1-3 mM). If RhPh- and APh-labeled filaments were studied in a given flow cell, there was minimal variability in sliding velocity between the fluorophores (standard deviation of 3% of the absolute sliding velocity). The variability was considerably smaller than that between flow cells, allowing us to use dual labeling of different actin types and then apply analysis of variance to detect minor functional differences between them. Using this method, we could statistically verify a 4% difference (P<0.001) in sliding velocity (3mM Mg ATP) between cardiac and skeletal muscle actin. Suggested improvements of the method would readily allow the detection of even smaller differences. We discuss implications of the results for nanotechnological applications, understanding actomyosin function, and reducing experimental costs and the use of laboratory animals.  相似文献   

3.
We have previously shown that selective heavy meromyosin (HMM) adsorption to predefined regions of nanostructured polymer resist surfaces may be used to produce a nanostructured in vitro motility assay. However, actomyosin function was of lower quality than on conventional nitrocellulose films. We have therefore studied actomyosin function on differently derivatized glass surfaces with the aim to find a substitute for the polymer resists. We have found that surfaces derivatized with trimethylchlorosilane (TMCS) were superior to all other surfaces tested, including nitrocellulose. High-quality actin filament motility was observed up to 6 days after incubation with HMM and the fraction of motile actin filaments and the velocity of smooth sliding were generally higher on TMCS than on nitrocellulose. The actomyosin function on TMCS-derivatized glass and nitrocellulose is considered in relation to roughness and hydrophobicity of these surfaces. The results suggest that TMCS is an ideal substitute for polymer resists in the nanostructured in vitro motility assay. Furthermore, TMCS derivatized glass also seems to offer several advantages over nitrocellulose for HMM adsorption in the ordinary in vitro motility assay.  相似文献   

4.
The actomyosin interaction plays a key role in a number of cellular functions. Single-molecule measurement techniques have been developed to study the mechanism of the actomyosin contractile system. However, the behavior of isolated single molecules does not always reflect that of molecules in a complex system such as a muscle fiber. Here, we developed a simple method for studying the kinetic parameters of the actomyosin interaction using small numbers of molecules. This approach does not require the specialized equipment needed for single-molecule measurements, and permits us to observe behavior that is more similar to that of a complex system. Using an in vitro motility assay, we examined the duration of continuous sliding of actin filaments on a sparsely distributed heavy meromyosin-coated surface. To estimate the association rate constant of the actomyosin motile system, we compared the distribution of experimentally obtained duration times with a computationally simulated distribution. We found that the association rate constant depends on the sliding velocity of the actin filaments. This technique may be used to reveal new aspects of the kinetics of various motor proteins in complex systems.  相似文献   

5.
Caldesmon is known to inhibit actomyosin ATPase and filament sliding in vitro, and may play a role in modulating smooth muscle contraction as well as in diverse cellular processes including cytokinesis and exocytosis. However, the structural basis of caldesmon action has not previously been apparent. We have recorded electron microscope images of negatively stained thin filaments containing caldesmon and tropomyosin which were isolated from chicken gizzard smooth muscle in EGTA. Three-dimensional helical reconstructions of these filaments show actin monomers whose bilobed shape and connectivity are very similar to those previously seen in reconstructions of frozen-hydrated skeletal muscle thin filaments. In addition, a continuous thin strand of density follows the long-pitch actin helices, in contact with the inner domain of each actin monomer. Gizzard thin filaments treated with Ca2+/calmodulin, which dissociated caldesmon but not tropomyosin, have also been reconstructed. Under these conditions, reconstructions also reveal a bilobed actin monomer, as well as a continuous surface strand that appears to have moved to a position closer to the outer domain of actin. The strands seen in both EGTA- and Ca2+/calmodulin-treated filaments thus presumably represent tropomyosin. It appears that caldesmon can fix tropomyosin in a particular position on actin in the absence of calcium. An influence of caldesmon on tropomyosin position might, in principle, account for caldesmon's ability to modulate actomyosin interaction in both smooth muscles and non-muscle cells.  相似文献   

6.
A hallmark of class-V myosins is their processivity—the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity.  相似文献   

7.
Hatori K  Tamura T  Kawano K  Tamura M  Honda H 《Bio Systems》2004,78(1-3):149-153
The actomyosin motor as a principal functional component of cell motility is highly coordinated in regulating the participating molecular components. At the same time, it has to be flexible and plastic enough to accommodate itself to a wide variety of operational conditions. We prepared two different types of actomyosin systems. One is a natural intact actomyosin system with no artificial constraint on the kinetic degrees of freedom of the actin filaments, and the other is a regulated one with actin filaments supplemented by intra- and intermolecular crosslinking to suppress the kinetic degrees of freedom to a certain extent. Crosslinked actomyosin systems were found to remain almost insensitive to calcium regulation even when intact troponin-tropomyosin regulatory component was incorporated. Both the ATPase and the motile activities of the actin filaments sliding on myosin molecules were markedly lowered by the crosslinking. In contrast, once the crosslinking was cleaved, both properties returned to the normal as with intact actomyosin systems.  相似文献   

8.
Muscle contraction and other forms of cell motility occur as a result of cyclic interactions between myosin molecules and actin filaments. Force generation is generally attributed to ATP-driven structural changes in myosin, whereas a passive role is ascribed to actin. However, some results challenge this view, predicting structural changes in actin during motor activity, e.g., when the actin filaments slide on a myosin-coated surface in vitro. Here, we analyzed statistical properties of the sliding filament paths, allowing us to detect changes of this type. It is interesting to note that evidence for substantial structural changes that led to increased bending flexibility of the filaments was found in phalloidin-stabilized, but not in phalloidin-free, actin filaments. The results are in accordance with the idea that a high-flexibility structural state of actin is a prerequisite for force production, but not the idea that a low-to-high flexibility transition of the actin filament should be an important component of the force-generating step per se. Finally, our data challenge the general view that phalloidin-stabilized filaments behave as native actin filaments in their interaction with myosin. This has important implications, since phalloidin stabilization is a routine procedure in most studies of actomyosin function.  相似文献   

9.
Ca2+ regulation of molluscan actomyosin adenosine triphosphatase is known to be associated with the myosin molecule. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, however, also suggests the possible presence of troponin, a thin-filament-linked Ca2+-regulatory complex. In the present study, scallop troponin and tropomyosin were prepared and complexed with rabbit actin; the resulting synthetic thin filaments form a Ca2+-dependent actomyosin adenosine triphosphatase with Ca2+-insensitive rabbit myosin, indicating that the troponin in scallops is potentially functional. Scallop troponin I was isolated and mixed with chicken troponin C and troponin T, forming a functional hybrid troponin complex, indicating that scallop and vertebrate troponins may act by a common mechanism. Densitometry of sodium dodecyl sulphate/polyacrylamide gels reveals that in synthetic thin filaments there are larger amounts of troponin than are present in native thin filaments. Amounts present in the intact muscle were not determined.  相似文献   

10.
《Biotechnology advances》2017,35(7):867-888
The cytoskeletal filaments are self-assembled protein polymers with 8–25 nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways.  相似文献   

11.
Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm−1). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.  相似文献   

12.
Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.  相似文献   

13.
Actin networks in migrating cells exist as several interdependent structures: sheet-like networks of branched actin filaments in lamellipodia; arrays of bundled actin filaments co-assembled with myosin II in lamellae; and actin filaments that engage focal adhesions. How these dynamic networks are integrated and coordinated to maintain a coherent actin cytoskeleton in migrating cells is not known. We show that the large GTPase dynamin2 is enriched in the distal lamellipod where it regulates lamellipodial actin networks as they form and flow in U2-OS cells. Within lamellipodia, dynamin2 regulated the spatiotemporal distributions of α-actinin and cortactin, two actin-binding proteins that specify actin network architecture. Dynamin2''s action on lamellipodial F-actin influenced the formation and retrograde flow of lamellar actomyosin via direct and indirect interactions with actin filaments and a finely tuned GTP hydrolysis activity. Expression in dynamin2-depleted cells of a mutant dynamin2 protein that restores endocytic activity, but not activities that remodel actin filaments, demonstrated that actin filament remodeling by dynamin2 did not depend of its functions in endocytosis. Thus, dynamin2 acts within lamellipodia to organize actin filaments and regulate assembly and flow of lamellar actomyosin. We hypothesize that through its actions on lamellipodial F-actin, dynamin2 generates F-actin structures that give rise to lamellar actomyosin and for efficient coupling of F-actin at focal adhesions. In this way, dynamin2 orchestrates the global actin cytoskeleton.  相似文献   

14.
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.  相似文献   

15.
Caldesmon inhibits actomyosin ATPase and filament sliding in vitro, and therefore may play a role in modulating smooth and non-muscle motile activities. A bacterially expressed caldesmon fragment, 606C, which consists of the C-terminal 150 amino acids of the intact molecule, possesses the same inhibitory properties as full-length caldesmon and was used in our structural studies to examine caldesmon function. Three-dimensional image reconstruction was carried out from electron micrographs of negatively stained, reconstituted thin filaments consisting of actin and smooth muscle tropomyosin both with and without added 606C. Helically arranged actin monomers and tropomyosin strands were observed in both cases. In the absence of 606C, tropomyosin adopted a position on the inner edge of the outer domain of actin monomers, with an apparent connection to sub-domain 1 of actin. In 606C-containing filaments that inhibited acto-HMM ATPase activity, tropomyosin was found in a different position, in association with the inner domain of actin, away from the majority of strong myosin binding sites. The effect of caldesmon on tropomyosin position therefore differs from that of troponin on skeletal muscle filaments, implying that caldesmon and troponin act by different structural mechanisms.  相似文献   

16.
Hegyi G  Belágyi J 《The FEBS journal》2006,273(9):1896-1905
Previous cross-linking studies [Kim E, Bobkova E, Hegyi G, Muhlrad A & Reisler E (2002) Biochemistry 41, 86-93] have shown that site-specific cross-linking among F-actin monomers inhibits the motion and force generation of actomyosin. However, it does not change the steady-state ATPase parameters of actomyosin. These apparently contradictory findings have been attributed to the uncoupling of force generation from other processes of actomyosin interaction as a consequence of reduced flexibility at the interface between actin subdomains-1 and -2. In this study, we use EPR spectroscopy to investigate the effects of cross-linking constituent monomers upon the molecular dynamics of the F-actin complex. We show that cross-linking reduces the rotational mobility of an attached probe. It is consistent with the filaments becoming more rigid. Addition of heavy meromyosin (HMM) to the cross-linked filaments further restricts the rotational mobility of the probe. The effect of HMM on the actin filaments is highly cooperative: even a 1 : 10 molar ratio of HMM to actin strongly restricts the dynamics of the filaments. More interesting results are obtained when nucleotides are also added. In the presence of HMM and ADP, similar strongly reduced mobility of the probe was found than in a rigor state. In the presence of adenosine 5'[betagamma-imido] triphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, weak binding of HMM to either cross-linked or native F-actin increases probe mobility. By contrast, weak binding by the HMM/ADP/AlF4 complex has different effects upon the two systems. This protein-nucleotide complex increases probe mobility in native actin filaments, as does HMM + AMPPNP. However, its addition to cross-linked filaments leaves probe mobility as constrained as in the rigor state. These findings suggest that the dynamic change upon weak binding by HMM/ADP/AlF4 which is inhibited by cross-linking is essential to the proper mechanical behaviour of the filaments during movement.  相似文献   

17.
Actin and myosin are the two main proteins required for cell motility and muscle contraction. The structure of their strongly bound complex—rigor state—is a key for delineating the functional mechanism of actomyosin motor. Current knowledge of that complex is based on models obtained from the docking of known atomic structures of actin and myosin subfragment 1 (S1; the head and neck region of myosin) into low-resolution electron microscopy electron density maps, which precludes atomic- or side-chain-level information. Here, we use radiolytic protein footprinting for global mapping of sites across the actin molecules that are impacted directly or allosterically by myosin binding to actin filaments. Fluorescence and electron paramagnetic resonance spectroscopies and cysteine actin mutants are used for independent, residue-specific probing of S1 effects on two structural elements of actin. We identify actin residue candidates involved in S1 binding and provide experimental evidence to discriminate between the regions of hydrophobic and electrostatic interactions. Focusing on the role of the DNase I binding loop (D-loop) and the W-loop residues of actin in their interactions with S1, we found that the emission properties of acrylodan and the mobility of electron paramagnetic resonance spin labels attached to cysteine mutants of these residues change strongly and in a residue-specific manner upon S1 binding, consistent with the recently proposed direct contacts of these loops with S1. As documented in this study, the direct and indirect changes on actin induced by myosin are more extensive than known until now and attest to the importance of actin dynamics to actomyosin function.  相似文献   

18.
Epithelial cells assemble specialized actomyosin structures at E-Cadherin–based cell–cell junctions, and the force exerted drives cell shape change during morphogenesis. The mechanisms that build this supramolecular actomyosin structure remain unclear. We used ZO-knockdown MDCK cells, which assemble a robust, polarized, and highly organized actomyosin cytoskeleton at the zonula adherens, combining genetic and pharmacologic approaches with superresolution microscopy to define molecular machines required. To our surprise, inhibiting individual actin assembly pathways (Arp2/3, formins, or Ena/VASP) did not prevent or delay assembly of this polarized actomyosin structure. Instead, as junctions matured, micron-scale supramolecular myosin arrays assembled, with aligned stacks of myosin filaments adjacent to the apical membrane, overlying disorganized actin filaments. This suggested that myosin arrays might bundle actin at mature junctions. Consistent with this idea, inhibiting ROCK or myosin ATPase disrupted myosin localization/organization and prevented actin bundling and polarization. We obtained similar results in Caco-2 cells. These results suggest a novel role for myosin self-assembly, helping drive actin organization to facilitate cell shape change.  相似文献   

19.
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin II motor activity. Model simulations based on experimental measurements support the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time regardless of the initial ring size, as originally reported for C. elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to different ploidies.  相似文献   

20.
Actin Purified from Maize Pollen Functions in Living Plant Cells   总被引:12,自引:1,他引:11       下载免费PDF全文
A vast array of actin binding proteins (ABPs), together with intracellular signaling molecules, modulates the spatiotemporal distribution of actin filaments in eukaryotic cells. To investigate the complex regulation of actin organization in plant cells, we designed experiments to reconstitute actin-ABP interactions in vitro with purified components. Because vertebrate skeletal [alpha]-actin has distinct and unpredictable binding affinity for nonvertebrate ABPs, it is essential that these in vitro studies be performed with purified plant actin. Here, we report the development of a new method for isolating functional actin from maize pollen. The addition of large amounts of recombinant profilin to pollen extracts facilitated the depolymerization of actin filaments and the formation of a profilin-actin complex. The profilin-actin complex was then isolated by affinity chromatography on poly-L-proline-Sepharose, and actin was selectively eluted with a salt wash. Pollen actin was further purified by one cycle of polymerization and depolymerization. The recovery of functional actin by this rapid and convenient procedure was substantial; the average yield was 6 mg of actin from 10 g of pollen. We undertook an initial physicochemical characterization of this native pollen actin. Under physiological conditions, pollen actin polymerized with kinetics similar in quality to those for vertebrate [alpha]-actin and had a critical concentration for assembly of 0.6 [mu]M. Moreover, pollen actin interacted specifically and in a characteristic fashion with several ABPs. Tradescantia cells were microinjected and used as an experimental system to study the behavior of pollen actin in vivo. We demonstrated that purified pollen actin ameliorated the effects of injecting excess profilin into live stamen hair cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号