首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymerization induces hydrolysis of ATP bound to actin, followed by γ-phosphate release, which helps advance the disassembly of actin filaments into ADP-G-actin. Mechanical understanding of this correlation between actin assembly and ATP hydrolysis has been an object of intensive studies in biochemistry and structural biology for many decades. Although actin polymerization and depolymerization occur only at either the barbed or pointed ends and the kinetic and equilibrium properties are substantially different from each other, characterizing their properties is difficult to do by bulk assays, as these assays report the average of all actin filaments in solution and are therefore not able to discern the properties of individual actin filaments. Biochemical studies of actin polymerization and hydrolysis were hampered by these inherent properties of actin filaments. Total internal reflection fluorescence (TIRF) microscopy overcame this problem by observing single actin filaments. With TIRF, we now know not only that each end has distinct properties, but also that the rate of γ-phosphate release is much faster from the terminals than from the interior of actin filaments. The rate of γ-phosphate release from actin filament ends is even more accelerated when latrunculin A is bound. These findings highlight the importance of resolving structural differences between actin molecules in the interior of the filament and those at either filament end. This review provides a history of observing actin filaments under light microscopy, an overview of dynamic properties of ATP hydrolysis at the end of actin filament, and structural views of γ-phosphate release.  相似文献   

2.
T Keiser  A Schiller  A Wegner 《Biochemistry》1986,25(17):4899-4906
The nonlinear increase of the elongation rate of actin filaments above the critical monomer concentration was investigated by nucleated polymerization of actin. Significant deviations from linearity were observed when actin was polymerized in the presence of magnesium ions. When magnesium ions were replaced by potassium or calcium ions, no deviations from linearity could be detected. The nonlinearity was analyzed by two simple assembly mechanisms. In the first model, if the ATP hydrolysis by polymeric actin is approximately as fast as the incorporation of monomers into filaments, terminal subunits of lengthening filaments are expected to carry to some extent ADP. As ADP-containing subunits dissociate from the ends of actin filaments faster than ATP-containing subunits, the rate of elongation of actin filaments would be nonlinearly correlated with the monomer concentration. In the second model (conformational change model), actin monomers and filament subunits were assumed to occur in two conformations. The association and dissociation rates of actin molecules in the two conformations were thought to be different. The equilibrium distribution between the two conformations was assumed to be different for monomers and filament subunits. The ATP hydrolysis was thought to lag behind polymerization and conformational change. As under the experimental conditions the rate of ATP hydrolysis by polymeric actin was independent of the concentration of filament ends, the observed nonlinear increase of the rate of elongation with the monomer concentration above the critical monomer concentration was unlikely to be caused by ATP hydrolysis at the terminal subunits. The conformational change model turned out to be the simplest assembly mechanism by which all available experimental data could be explained.  相似文献   

3.
We have estimated the step size of the myosin cross-bridge (d, displacement of an actin filament per one ATP hydrolysis) in an in vitro motility assay system by measuring the velocity of slowly moving actin filaments over low densities of heavy meromyosin on a nitrocellulose surface. In previous studies, only filaments greater than a minimum length were observed to undergo continuous sliding movement. These filaments moved at the maximum speed (Vo), while shorter filaments dissociated from the surface. We have now modified the assay system by including 0.8% methylcellulose in the ATP solution. Under these conditions, filaments shorter than the previous minimum length move, but significantly slower than Vo, as they are propelled by a limited number of myosin heads. These data are consistent with a model that predicts that the sliding velocity (v) of slowly moving filaments is determined by the product of vo and the fraction of time when at least one myosin head is propelling the filament, that is, v = vo [1-(1-ts/tc)N], where ts is the time the head is strongly bound to actin, tc is the cycle time of ATP hydrolysis, and N is the average number of myosin heads that can interact with the filament. Using this equation, the optimum value of ts/tc to fit the measured relationship between v and N was calculated to be 0.050. Assuming d = vots, the step size was then calculated to be between 10nm and 28 nm per ATP hydrolyzed, the latter value representing the upper limit. This range is within that of geometric constraint for conformational change imposed by the size of the myosin head, and therefore is not inconsistent with the swinging cross-bridge model tightly coupled with ATP hydrolysis.  相似文献   

4.
The exchange of actin filament subunits for unpolymerized actin or for subunits in other filaments has been quantitated by three experimental techniques: fluorescence energy transfer, incorporation of 35S-labeled actin monomers into unlabeled actin filaments, and exchange of [14C]ATP with filament-bound ADP. In the fluorescence energy transfer experiments, actin labeled with 5-(iodoacetamidoethyl)aminonaphthalene- 1-sulfonic acid (IAENS) served as the fluorescent energy donor, and actin labeled with either fluorescein-5-isothiocyanate (FITC) or fluorescein-5-maleimide (FM) served as the energy acceptor. Fluorescent- labeled actins from Dictyostelium amoebae and rabbit skeletal muscle were very similar to their unlabeled counterparts with respect to critical actin concentration for filament assembly, assembly rate, ATP hydrolysis upon assembly, and steady-state ATPase. As evidenced by two different types of fluorescence energy transfer experiments, less than 5% of the actin filament subunits exchanged under a variety of buffer conditions at actin concentrations greater than 0.5 mg/ml. At all actin concentrations limited exchange to a plateau level occurred with a half- time of about 20 min. Nearly identical results were obtained when exchange was quantitated by incorporation of 35S-labeled Dictyostelium actin monomers into unlabeled muscle actin or Dictyostelium actin filaments. Furthermore, the proportion of filament-bound ADP which exchanged with [14C]-ATP was nearly the same as actin subunit exchange measured by fluorescence energy transfer and 35S-labeled actin incorporation. These experiments demonstrate that under approximately physiologic ionic conditions only a small percentage of subunits in highly purified skeletal muscle or Dictyostelium F-actin participate in exchange.  相似文献   

5.
In response to activation by WASP-family proteins, the Arp2/3 complex nucleates new actin filaments from the sides of preexisting filaments. The Arp2/3-activating (VCA) region of WASP-family proteins binds both the Arp2/3 complex and an actin monomer and the Arp2 and Arp3 subunits of the Arp2/3 complex bind ATP. We show that Arp2 hydrolyzes ATP rapidly—with no detectable lag—upon nucleation of a new actin filament. Filamentous actin and VCA together do not stimulate ATP hydrolysis on the Arp2/3 complex, nor do monomeric and filamentous actin in the absence of VCA. Actin monomers bound to the marine macrolide Latrunculin B do not polymerize, but in the presence of phalloidin-stabilized actin filaments and VCA, they stimulate rapid ATP hydrolysis on Arp2. These data suggest that ATP hydrolysis on the Arp2/3 complex is stimulated by interaction with a single actin monomer and that the interaction is coordinated by VCA. We show that capping of filament pointed ends by the Arp2/3 complex (which occurs even in the absence of VCA) also stimulates rapid ATP hydrolysis on Arp2, identifying the actin monomer that stimulates ATP hydrolysis as the first monomer at the pointed end of the daughter filament. We conclude that WASP-family VCA domains activate the Arp2/3 complex by driving its interaction with a single conventional actin monomer to form an Arp2–Arp3–actin nucleus. This actin monomer becomes the first monomer of the new daughter filament.  相似文献   

6.
Hydrolysis of the triphosphate moiety of ATP, catalyzed by myosin, induces alterations in the affinity of the myosin heads for actin filaments via conformational changes, thereby causing motility of the actomyosin complexes. To elucidate the contribution of the triphosphate group attached to adenosine, we examined the enzymatic activity of heavy meromyosin (HMM) with actin filaments for inorganic tripolyphosphate (3PP) using a Malachite green method and evaluated using fluorescence microscopy the effects of 3PP on actin filament motility on HMM-coated glass slides. In the presence of MgCl2, HMM hydrolyzed 3PP at a maximum rate of 0.016 s−1 HMM−1, which was four times lower than the hydrolysis rate of ATP. Tetrapolyphosphate (4PP) was hydrolyzed at a rate similar to that of 3PP hydrolysis. The hydrolysis rates of 3PP and 4PP were enhanced by roughly 10-fold in the presence of actin filaments. In motility assays, the presence of polyphosphates did not lead to the sliding movement of actin filaments. Moreover, in the presence of ATP at low concentrations, the sliding velocity of actin filaments decreased as the concentration of added polyphosphate increased, indicating a competitive binding of polyphosphate to myosin heads with ATP. These results suggested that the energy produced by standalone triphosphate hydrolysis did not induce the unidirectional motion of actomyosin and that the link between triphosphate and adenosine was crucial for motility.  相似文献   

7.
In order to study the mechanochemical coupling in actomyosin energy transduction, the sliding distance of an actin filament induced by one ATP hydrolysis cycle was obtained by using an in vitro movement assay that permitted quantitative and simultaneous measurements of (1) the movements of single fluorescently labeled actin filaments on myosin bound to coverslip surfaces and (2) the ATPase rates. The sliding distance was determined as (the working stroke time in one ATPase cycle, tws) x (the filament velocity, v). tws was obtained from the ATPase turnover rate of myosin during the sliding (kt), the ATP hydrolysis time (delta t) and the ON-rate at which myosin heads enter into the working stroke state when they encounter actin (kON); tws approximately 1/kt-delta t-1/kON. kt was estimated from the ATPase rates of the myosin-coated surface during the sliding of actin filaments. delta t has been determined as less than 1/100 per second, kON was estimated by analyzing the movements of very short (40 nm) filaments. The resulting sliding distance during one ATP hydrolysis cycle near zero load was greater than 100 nm, which is about ten times longer than that expected for a single attachment-detachment cycle between an actin and a myosin head. This leads to the conclusion that the coupling between the ATPase and attachment-detachment cycles is not determined rigidly in a one-to-one fashion.  相似文献   

8.
Motile and morphogenetic cellular processes are driven by site-directed assembly of actin filaments. Formins, proteins characterized by formin homology domains FH1 and FH2, are initiators of actin assembly. How formins simply bind to filament barbed ends in rapid equilibrium or find free energy to become a processive motor of filament assembly remains enigmatic. Here we demonstrate that the FH1-FH2 domain accelerates hydrolysis of ATP coupled to profilin-actin polymerization and uses the derived free energy for processive polymerization, increasing 15-fold the rate constant for profilin-actin association to barbed ends. Profilin is required for and takes part in the processive function. Single filaments grow at least 10 microm long from formin bound beads without detaching. Transitory formin-associated processes are generated by poisoning of the processive cycle by barbed-end capping proteins. We successfully reconstitute formin-induced motility in vitro, demonstrating that this mechanism accounts for the puzzlingly rapid formin-induced actin processes observed in vivo.  相似文献   

9.
In nematode sperm cell motility, major sperm protein (MSP) filament assembly results in dynamic membrane protrusions in a manner that closely resembles actin-based motility in other eukaryotic cells. Paradoxically, whereas actin-based motility is driven by addition of ATP-bound actin subunits onto actin filament plus-ends located at the cell membrane, MSP dimers assemble from solution into nonpolar filaments that lack a nucleotide binding site. Thus, filament polarity and on-filament ATP hydrolysis, although essential for actin-based motility, appear to be unnecessary for membrane protrusions by MSP. As a potential resolution to this paradox, we propose a model for MSP filament assembly and force generation by MSP filament end-tracking proteins. In this model, ATP hydrolysis drives affinity-modulated, processive interactions between membrane-associated proteins and elongating filament ends. However, in contrast to the "actoclampin" model for actin filament end-tracking motors, ATP activates the tracking protein (or a soluble cofactor) rather than the MSP subunits themselves (in contrast to activation of actin subunits by ATP binding). The MSP end-tracking model predicts properties that are consistent with several key observations of MSP-based motility, including persistent membrane attachment, polymerization of filament ends at the membrane with depolymerization of free-filament ends away from the membrane, as well as a saturating dependence of polymerization rate on the concentration of non-MSP soluble cytoplasmic components.  相似文献   

10.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

11.
MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.  相似文献   

12.
We used the dendritic nucleation hypothesis to formulate a mathematical model of the assembly and disassembly of actin filaments at sites of clathrin-mediated endocytosis in fission yeast. We used the wave of active WASp recruitment at the site of the patch formation to drive assembly reactions after activation of Arp2/3 complex. Capping terminated actin filament elongation. Aging of the filaments by ATP hydrolysis and γ-phosphate dissociation allowed actin filament severing by cofilin. The model could simulate the assembly and disassembly of actin and other actin patch proteins using measured cytoplasmic concentrations of the proteins. However, to account quantitatively for the numbers of proteins measured over time in the accompanying article (Sirotkin et al., 2010 , MBoC 21: 2792–2802), two reactions must be faster in cells than in vitro. Conditions inside the cell allow capping protein to bind to the barbed ends of actin filaments and Arp2/3 complex to bind to the sides of filaments faster than the purified proteins in vitro. Simulations also show that depolymerization from pointed ends cannot account for rapid loss of actin filaments from patches in 10 s. An alternative mechanism consistent with the data is that severing produces short fragments that diffuse away from the patch.  相似文献   

13.
T Ohm  A Wegner 《Biochemistry》1991,30(47):11193-11197
The equilibrium of the copolymerization of ATP-actin and ADP-actin was investigated by an analysis of the critical concentrations of mixtures of ATP-actin and ADP-actin. The molar ratio of bound ATP to bound ADP was controlled by the ratio of free ATP and ADP. The experiments were performed under conditions (100 mM KCl, l mM MgCl2, pH 7.5, 25 degrees C) where the ATP hydrolysis following binding of actin monomers to barbed filament ends was so slow that the distribution of ATP or ADP bound to the subunits near the ends of filaments was not affected by ATP hydrolysis. According to the analysis of the critical concentrations, the equilibrium constants for incorporation of ATP-actin or ADP-actin into filaments were independent of the type of nucleotide bound to contiguous subunits.  相似文献   

14.
The hydrolysis of ATP accompanying actin polymerization destabilizes the filament, controls actin assembly dynamics in motile processes, and allows the specific binding of regulatory proteins to ATP- or ADP-actin. However, the relationship between the structural changes linked to ATP hydrolysis and the functional properties of actin is not understood. Labeling of actin Cys374 by tetramethylrhodamine (TMR) has been reported to make actin non-polymerizable and enabled the crystal structures of ADP-actin and 5'-adenylyl beta,gamma-imidodiphosphate-actin to be solved. TMR-actin has also been used to solve the structure of actin in complex with the formin homology 2 domain of mammalian Dia1. To understand how the covalent modification of actin by TMR may affect the structural changes linked to ATP hydrolysis and to evaluate the functional relevance of crystal structures of TMR-actin in complex with actin-binding proteins, we have analyzed the assembly properties of TMR-actin and its interaction with regulatory proteins. We show that TMR-actin polymerized in very short filaments that were destabilized by ATP hydrolysis. The critical concentrations for assembly of TMR-actin in ATP and ADP were only an order of magnitude higher than those for unlabeled actin. The functional interactions of actin with capping proteins, formin, actin-depolymerizing factor/cofilin, and the VCA-Arp2/3 filament branching machinery were profoundly altered by TMR labeling. The data suggest that TMR labeling hinders the intramolecular movements of actin that allow its specific adaptative recognition by regulatory proteins and that determine its function in the ATP- or ADP-bound state.  相似文献   

15.
When purified muscle actin was mixed with microtubule-associated proteins (MAPs) prepared from brain microtubules assembled in vitro, actin filaments were organized into discrete bundles, 26 nm in diameter. MAP-2 was the principal protein necessary for the formation of the bundles. Analysis of MAP-actin bundle formation by sedimentation and electrophoresis revealed the bundles to be composed of approximately 20% MAP-2 and 80% actin by weight. Transverse striations were observed to occur at 28-nm intervals along negatively stained MAP- actin bundles, and short projections, approximately 12 nm long and spaced at 28-nm intervals, were resolved by high-resolution metal shadowing. The formation of MAP-actin bundles was inhibited by millimolar concentrations of ATP, AMP-PCP (beta, gamma-methylene- adenosine triphosphate), and pyrophosphate but not by AMP, ADP, or GTP. The addition of ATP to a solution containing MAP-actin bundles resulted in the dissociation of the bundles into individual actin filaments; discrete particles, presumably MAP-2, were periodically attached along the splayed filaments. These results demonstrate that MAPs can bind to actin filaments and can induce the reversible formation of actin filament bundles in vitro.  相似文献   

16.
Growing evidence suggests that the nucleotide bound to actin filaments serves as a timer to control actin filament turnover during cell motility (Pollard, T. D., Blanchoin, L., and Mullins, R. D. (2000) Annu. Rev. Biophys. Biomol. Struct. 29, 545-576). We re-examined the hydrolysis of ATP by polymerized actin using mechanical quenched-flow methods to improve temporal resolution. The rate constant for ATP hydrolysis by polymerized Mg actin is 0.3 s(-1), 3-fold faster than that measured manually. The ATP hydrolysis rate is similar when Mg ATP actin elongates either the pointed end or the barbed end of filaments. Polymerized Ca actin hydrolyzes ATP at 0.05 s(-1). Mg ATP actin saturated with profilin can elongate barbed ends at >60 s(-1), 2 orders of magnitude faster than ATP hydrolysis (0.3 s(-1)). Given that profilin binds to a surface on actin that is buried in the Holmes model of the actin filament, we expect that profilin will block subunit addition at the barbed end of a filament. Profilin must move from this site at rates much faster than it dissociates from monomers (4 s(-1)). ATP hydrolysis is not required for this movement.  相似文献   

17.
The hydrolysis of ATP associated with actin and profilin-actin polymerization is pivotal in cell motility. It is at the origin of treadmilling of actin filaments and controls their dynamics and mechanical properties, as well as their interactions with regulatory proteins. The slow release of inorganic phosphate (Pi) that follows rapid cleavage of ATP gamma phosphate is linked to an increase in the rate of filament disassembly. The mechanism of Pi release in actin filaments has remained elusive for over 20 years. Here, we developed a microfluidic setup to accurately monitor the depolymerization of individual filaments and determine their local ADP-Pi content. We demonstrate that Pi release in the filament is not a vectorial but a random process with a half-time of 102 seconds, irrespective of whether the filament is assembled from actin or profilin-actin. Pi release from the depolymerizing barbed end is faster (half-time of 0.39 seconds) and further accelerated by profilin. Profilin accelerates the depolymerization of both ADP- and ADP-Pi-F-actin. Altogether, our data show that during elongation from profilin-actin, the dissociation of profilin from the growing barbed end is not coupled to Pi release or to ATP cleavage on the terminal subunit. These results emphasize the potential of microfluidics in elucidating actin regulation at the scale of individual filaments.  相似文献   

18.
Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.  相似文献   

19.
Cell motility depends on the rapid assembly, aging, severing, and disassembly of actin filaments in spatially distinct zones. How a set of actin regulatory proteins that sustains actin-based force generation during motility work together in space and time remains poorly understood. We present our study of the distribution and dynamics of Arp2/3 complex, capping protein (CP), and actin-depolymerizing factor (ADF)/cofilin in actin "comet tails," using a minimal reconstituted system with nucleation-promoting factor (NPF)-coated beads. The Arp2/3 complex concentrates at nucleation sites near the beads as well as in the first actin shell. CP colocalizes with actin and is homogeneously distributed throughout the comet tail; it serves to constrain the spatial distribution of ATP/ADP-P(i) filament zones to areas near the bead. The association of ADF/cofilin with the actin network is therefore governed by kinetics of actin assembly, actin nucleotide state, and CP binding. A kinetic simulation accurately validates these observations. Following its binding to the actin networks, ADF/cofilin is able to break up the dense actin filament array of a comet tail. Stochastic severing by ADF/cofilin loosens the tight entanglement of actin filaments inside the comet tail and facilitates turnover through the macroscopic release of large portions of the aged actin network.  相似文献   

20.
Direct demonstration of actin filament annealing in vitro   总被引:6,自引:5,他引:1  
Direct electron microscopic examination confirms that short actin filaments rapidly anneal end-to-end in vitro, leading over time to an increase in filament length at steady state. During annealing of mixtures of native unlabeled filaments and glutaraldehyde-fixed filaments labeled with myosin subfragment-1, the structural polarity within heteropolymers is conserved absolutely. Annealing does not appear to require either ATP hydrolysis or the presence of exogenous actin monomers, suggesting that joining occurs through the direct association of filament ends. During recovery from sonication the initial rate of annealing is consistent with a second-order reaction involving the collision of two filament ends with an apparent annealing rate constant of 10(7) M-1s-1. This rapid phase lasts less than 10 s and is followed by a slow phase lasting minutes to hours. Annealing is calculated to contribute minimally to filament elongation during the initial stages of self-assembly. However, the rapid rate of annealing of sonicated fixed filaments observed in vitro suggests that it may be an efficient mechanism for repairing breaks in filaments and that annealing together with polymer-severing mechanisms may contribute significantly to the dynamics and function of actin filaments in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号