首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The latency of nucleoside diphosphatase (NDPase) in onions root homogenates has been examined by comparing the activation of NDPase activity resulting from detergent treatment with that due to storage of homogenates for several days in the cold. Both detergent treatment and cold storage activated NDPase approximately two-fold. In both cases this activation was paralleled by the loss of enzyme activity from the membrane fractions and its appearance in the supernatants. Electrophoresis of these supernatants revealed an identifical isoenzyme pattern of 5 NDPase bands for both preparations. Enzyme kinetic studies demonstrated that NDPase from the detergent-treated homogenate and the homogenate stored in the cold as well as NDPase from the membrane and supernatant fractions from each of the homogenates all had the same Km value. These data suggest that latency of NDPase is the result of a breakdown of cellular membranes and subsequent release of NDPase. Abbreviations: DOC, deoxycholate; NDPase, nucleoside diphosphatase; IDP, inosine 5'-diphosphate; UDP, uridine 5'-diphosphate; GDP, guanosine 5'-diphosphate.  相似文献   

2.
The activity of 1-aspartamido-beta-N-acetylglucosamine amidohydrolase (aspartylglucosylaminase, EC 3.5.1.26) was measured in normal and diseased human liver, brain and kidney. Organs from patients with aspartylglucosaminuria show very little activity. Crude homogenates of human organs show a reaction catalysed by a complex enzyme system. With homogenate, the formation of product was linear with time up to about 6 h. Reaction times longer than 6-7h resulted in a decrease in the total concentration of product. This phenomenon was not found with the partially purified enzyme fraction. Linearity of the enzyme activity with different protein concentrations was found, independent of the incubation time. Longer incubation of the crude homogenate resulted in the utilization of the product, N-acetylglucosamine. This phenomenon was not observed with the partially purified enzyme fraction. This amidase from human organs differs from that obtained from other sources and apparently represents a rather complex enzyme system.  相似文献   

3.
A simplified and sensitive procedure for the routine assay of UDP-glucuronosyltransferase activity towards 5-hydroxytryptamine (serotonin) was developed and the reaction product confirmed as the O-glucuronide of this substrate. The assay was used to study some properties of this UDP-glucuronosyltransferase activity. In mouse liver activity was stimulated by membrane-perturbation procedures and by UDP-N-acetylglucosamine. In rat liver it was stimulated by digitonin, but not by diethylnitrosamine. Mouse duodenum, kidney, and lung possessed activity that was less latent than in liver. No activity was found in homogenates of brain. The activity was present in Gunn rat liver, though only one-third of that in Wistar rat liver. Cat liver contained no UDP-glucuronosyltransferase activity towards 5-hydroxytryptamine.  相似文献   

4.
Studies on guanine deaminase and its inhibitors in rat tissue   总被引:5,自引:5,他引:0       下载免费PDF全文
1. In kidney, but not in rat whole brain and liver, guanine-deaminase activity was localized almost exclusively in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, as in brain and liver, the enzymic activity recovered in the supernatant was higher than that in the whole homogenate. The particulate fractions of kidney, especially the heavy mitochondria, brought about powerful inhibition of the supernatant guanine-deaminase activity. 2. In spleen, as in kidney, guanine-deaminase activity was localized in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, the particulate fractions did not inhibit the activity of the supernatant. 3. Guanine-deaminase activity in rat brain was absent from the cerebellum and present only in the cerebral hemispheres. The inhibitor of guanine deaminase was located exclusively in the cerebellum, where it was associated with the particles sedimenting at 5000g from sucrose homogenates. 4. Homogenates of cerebral hemispheres, the separated cortex or the remaining portion of the hemispheres had significantly higher guanine-deaminase activity than homogenates of whole brain. The enzymic activity of the subcellular particulate fractions was nearly the same. 5. Guanine deaminase was purified from the 15000g supernatant of sucrose homogenates of whole brain. The enzyme separated as two distinct fractions, A and B, on DEAE-cellulose columns. 6. The guanine-deaminase activity of the light-mitochondrial fraction of whole brain was fully exposed and solubilized by treatment with Triton X-100, and partially purified. 7. Tested in the form of crude preparations, the inhibitor from kidney did not act on the brain and liver supernatant enzymes and the inhibitor from cerebellum did not act on kidney enzyme, but the inhibitor from liver acted on both brain and kidney enzyme. 8. The inhibitor of guanine deaminase was purified from the heavy mitochondria of whole brain and liver and the 5000g residue of cerebellum, isolated from iso-osmotic homogenates. The inhibitor appeared to be protein in nature and was heat-labile. The inhibition of the enzyme was non-competitive. 9. Kinetic, immunochemical and electrophoretic studies with the preparations purified from brain revealed that the enzyme from light mitochondria was distinct from enzyme B from the supernatant. A distinction between the two forms of supernatant enzyme was less certain. 10. Guanine deaminase isolated from light mitochondria of brain did not react with 8-azaguanine or with the inhibitor isolated from heavy mitochondria.  相似文献   

5.
The histochemical method for the demonstration of D-amino acid oxidase activity in rat liver, based on the use of cerium ions and the diaminobenzidine-cobalt-hydrogen peroxide procedure, was improved by the application of unfixed cryostat sections and a semipermeable membrane interposed between section and gelled incubation medium. The amount of final reaction product precipitated in a granular form was about four times higher with this technique in comparison with conventional procedures using fixed sections and aqueous incubation media. The specificity of the reaction was proven by the 70% reduction of the amount of final reaction product when incubating in the presence of substrate and D,L-beta-hydroxybutyrate, a specific inhibitor of D-amino acid oxidase activity. Cytophotometric analysis of liver sections revealed that the specific test minus control reaction was linear with incubation time and section thickness. The Km value of the enzyme of 10.3 +/- 2.7 mM, as determined in periportal areas, is about five times the value found with biochemical methods in liver cell homogenates. The enzyme activity in periportal areas is about five times the activity in pericentral areas. Fasting (24 and 48 hr) induced a significant decrease in D-amino acid activity in periportal and pericentral areas. The possible physiological role of the enzyme in liver is discussed.  相似文献   

6.
Thiamine pyrophosphatase (TPPase), nucleoside diphosphatase (NDPase), and glucose-6-phosphatase (G-6-Pase) were localized by the cerium technique in guinea pig pinealocytes and compared with the corresponding lead technique. NDPase and TPPase were also compared at different pH values using the cerium technique. Vibratome sections of perfusion-fixed tissue were incubated with cerium chloride or lead nitrate. Substrates used were thiamine pyrophosphate (for TPPase), sodium inosine diphosphate (NDPase), and disodium glucose-6-phosphate (G-6-Pase). The 1-2 trans saccules of the Golgi apparatus showed TPPase and NDPase activity but none for G-6-Pase. The endoplasmic reticulum (ER) cisternae and perinuclear space had NDPase and G-6-Pase activity but not TPPase. The abluminal plasmalemma of endothelial cells and the plasmalemma of Schwann cells demonstrated TPPase and NDPase activity but the luminal plasmalemma of the endothelial cells and the plasmalemma of pinealocyte processes showed only NDPase activity. TPPase was active at all pH values tested, but NDPase was most active at pH values of 6.5 and 7.0. Lead phosphate precipitate was frequently seen in nuclei, perinuclear space, ER cisternae, and "synaptic" vesicles when lead was used as the capturing agent. These sites were usually not labeled when cerium was used.  相似文献   

7.
When rat liver cytosolic P-enolpyruvate carboxykinase is purified, its activity is no longer enhanced by incubation with 30 muM Fe2+. Ferrous ion stimulation of the purified enzyme is restored by the addition of rat liver cytosol. The agent responsible is a cytosolic protein, named P-enolpyruvate carboxykinase ferroactivator, that was readily separated from the enzyme during purification of the latter. A quantitative assay for P-enolpyruvate carboxykinase ferroactivator is described. Subcellular fractionation of livers from fasted rats shows that 98% of the combined mitochondrial and cytosolic P-enolpyruvate carboxykinase ferroactivator activity resides in the cytosol. Fasting does not produce significant change in this cytosolic activity when compared to that of fed animals. Examination of various tissue homogenates shows that the ferroactivator is found in liver, kidney, erythrocytes, adipose tissue, and brain. No activity was detected in blood serum or skeletal muscle. The ability to enhance the activity of purified rat liver cytosolic P-enolpyruvate carboxykinase in the presence of Fe2+ is not species specific. P-enolpyruvate carboxykinase ferroactivator may have an important function in regulating enzyme activity in vivo.  相似文献   

8.
These studies report the development of a simple, specific, and highly sensitive fluorometric assay for rat liver peroxisomal fatty acyl-CoA oxidase activity. In this in vitro procedure fatty acyl-CoA-dependent H2O2 production was coupled in a peroxidase-catalyzed reaction to the oxidation of scopoletin (6-methoxy-7-hydroxycoumarin), a highly fluorescent compound, to a nonfluorescent product. Enzyme-catalyzed reaction rates as low as 5 pmol of H2O2 produced per minute could readily be detected. The reaction was studied in liver homogenates from normal rats with respect to absolute activity, time course, protein concentration dependence, substrate concentration dependence, pH optimum, substrate specificity, and cofactor requirements. The properties of the enzyme activity as assessed by the fluorometric assay agree well with those determined by other investigators using other assay methods. After subcellular fractionation of liver homogenates by differential centrifugation, the fatty acyl-CoA oxidase activity distributed like known peroxisomal marker enzymes. These results demonstrate that the fluorometric assay of fatty acyl-CoA oxidase should be useful in studying the distribution, properties, and subcellular localization of the enzyme, particularly in enzyme sources of low activity or in situations when only small amounts of material are available.  相似文献   

9.
The glutamate decarboxylase activity in rough homogenates of cerebellum, cortex and truncal part of the rat brain was studied under different conditions of incubation: in the presence of 25 mM glutamate sodium, 0.4 mM pyridoxal-5'-phosphate and both these components. It is found that the initial glutamate decarboxylase activity in cerebellum homogenates is approximately twice as high as in the cortex and trunk homogenates. Addition of the substrate and cofactor, especially in the combination, stimulates considerably the yield of gamma-aminobutyric acid (GABA) in the glutamate decarboxylase reaction, the most pronounced activation being observed in the truncal homogenates. The glutamate/GABA relation both initial and after the completion of the reaction is the maximal in the cortex and minimal in the truncal part of the brain. The data obtained evidence for the differences in the content of the GABA-producing enzyme rather than for the presence of the specific mechanisms of the enzyme regulation in different brain areas.  相似文献   

10.
The 100,000 x g supernatant (cytosolic) fraction of rat tissue homogenates catalyzes the oxidation of all-trans retinal to retinoic acid. Kidney, testis, and lung were the most active of the tissues examined. The presence of enzyme activity in liver and intestine could be detected only when a substrate concentration beyond the saturation point for retinal reductase was used. Spleen, brain, and plasma had no activity. Boiled supernatants did not catalyze the reaction. The enzymatic product was chemically and physically identified as retinoic acid. The cytosol of kidney tissue also catalyzed the conversion of retinol to retinoic acid. These data indicate that kidney tissue has the highest retinal oxidase activity and suggest that it may play a major role in the oxidative metabolism of retinol in the body.  相似文献   

11.
Rat basophil leukemia cell homogenates effectively catalyze the conversion of leukotriene A4 to a mixture of leukotrienes C4 and D4 in the presence of glutathione. These homogenates also catalyze the formation of adducts of halogenated nitrobenzene with glutathione, as determined spectrophotometrically. While all the classical glutathione S-transferase activity resides in the soluble fraction of the homogenates, the thiol ether leukotriene-generating activity is found in the particulate fraction. This “leukotriene C synthetase” activity has been solubilized from a crude high-speed particulate fraction by means of the nonionic detergent, Triton X-100. The solubilized enzyme is incapable of converting 2,4-dinitrochlorobenzene to a colored product in the presence of glutathione. Nor will it react with 3,4-dichloronitrobenzene. On the other hand, under optimal conditions, this enzyme preparation is capable of generating about 0.1 nmol leukotriene C mg protein?1 min?1 in a reaction which continues in linear fashion for at least 10 min. This dissociation in substrate specificity, as well as differences in the inhibition profile, distinguish the enzyme activity in the particulate fraction from rat basophil leukemia cell homogenates from the microsomal glutathione S-transferase which has been described in rat liver homogenates, suggesting that this “leukotriene C synthetase” is a new and unique enzyme.  相似文献   

12.
UDP-galactose:glycoprotein galactosyltransferase activity has been measured in several tissues of the rat, ranging in age from 16 days embryo to 35 days postnatal. The enzyme activity was found to be high in fetal liver, lungs, and brain tissues but the concentration decreased with gestational age with no further changes after birth. The enzyme activity in the serum of newborns was higher than in pregnant and nonpregnant adult rats. There was no qualitative difference (optimum pH, cation requirements, affinity for the substrate UDP-galactose, or requirement for Triton X-100) between the enzyme from embryonic liver and that from adult rats. During the embryonic stage nearly half of the enzyme activity was localized in a plasma membrane-rich fraction and only a minor part in the microsomal fraction, while in the adult most of the activity was present in the microsomal fraction. Under certain conditions of assay the incorporation of galactose into glycoprotein in liver homogenates was greatly stimulated by CDP-choline or ATP. However, CDP-choline showed a considerably greater effect than ATP at 5 days after birth but this effect could be eliminated by solubilizing the homogenates in deoxycholate.  相似文献   

13.
—The activity of the glycine cleavage system (GCS) was determined in homogenates from five specific regions of the rat CNS (telencephalon, midbrain, cerebellum, medulla-pons, and spinal cord). An inverse trend was noted between the glycine content and the specific activity of the GCS in the regions. A 25-fold range in the enzyme activities was found between the telencephalon (highest) and the spinal cord (lowest). The properties of the GCS activity in CNS homogenates agreed with those properties previously described for this system in partially purified preparations of liver and brain mitochondria (Kikuchi , 1973; Bruin et al., 1973). Within the CNS homogenates, the liberation of CO2 from the carboxyl carbon of glycine was quantitatively coupled to the formation of serine. The presence of an endogenous inhibitor(s) within neural tissues was suggested by the non-additivity of the activities when homogenates from the various regions were combined. Moreover, homogenates of CNS tissue inhibited the GCS activity of liver homogenates, and an inverse relationship was found between the level of GCS activity in a given region of the CNS and its ability to inhibit the GCS activity of liver homogenates. This inhibition of liver activity was greatest when liver was incubated with homogenates of spinal cord (86%) and lowest when incubated with homogenates of telencephalon (20%). Because of this endogenous inhibition, the apparent activity of the GCS measured in vitro may not reflect the contribution of this enzyme system in the metabolism of glycine in vivo. Although the significance of this inhibition is not known, a possible role is discussed for the regulation of the levels in glycine and one-carbon pools within the CNS.  相似文献   

14.
K H Byington 《Life sciences》1987,40(21):2091-2095
The 3 or 4 phosphate ester of dopamine (PD) was hydrolyzed by homogenates of rat tissues to give inorganic phosphate (Pi) and dopamine. The rate of hydrolysis of PD by kidney homogenates was increased by exogenous MgCl2 but not CaCl2 or KCl. The activity of brain, heart or liver homogenates was insensitive to the added salts. Several lines of evidence indicate that alkaline phosphatase activity contributes to the high rate of PD hydrolysis by the kidney but not brain homogenate. The intravenous infusion of PD at 12 mumole/kg in one hr to anesthetized rats increased the dopamine content of the plasma, kidney and heart without altering brain or liver dopamine. The results suggest that PD may be more effective than dopamine for increasing dopamine levels of the kidney. In addition, the hydrolysis of PD by brain homogenates, which is independent of alkaline phosphatase activity, suggests that specific enzymes exist for the metabolism of PD.  相似文献   

15.
Cytidylate cyclase activity, which enzymatically converts cytidine 5'-triphosphate (CTP) to cytidine 3',5'-cyclic monophosphate (cyclic CMP), has been demonstrated in mouse tissue homogenates by use of a highly sensitive enzyme immunoassay (EIA) specific for cyclic CMP. Cyclic CMP formation is dependent on the amount of homogenate and on the incubation time. Although the enzyme activity was detected at wide ranges of pH from 6.8 to 11.5, the maximal activity was observed at around pH 9.4. The optimal temperature was 37 degrees C. Cytidylate cyclase activity was almost completely lost if the homogenates were heated at 90 degrees C for 3 min prior to use. The enzyme reaction exhibited typical Michaelis-Menten kinetics with an apparent Km for CTP of approx. 0.31 mM. Cyclic CMP formation was greatly enhanced with 4 mM Mn2+, Mg2+, Co2+; Mn2+ was the most effective. Fe2+ and Ca2+ were without effect. Cu2+ and Zn2+ at a concentration of 0.1 to 0.5 mM were inhibitory to Mn2+-dependent activity. Moreover, the enzyme activity was inhibited by several nucleotides including ATP, ADP, 5'-AMP, and GTP. Cytidylate cyclase activity was found to be present in all homogenates from a variety of mouse tissues examined except heart, with the highest level found in brain, and the lowest in liver.  相似文献   

16.
The thiamine pyrophosphatase (the enzyme [s] catalyzing the release of inorganic phosphate with thiamine pyrophosphate as the substrate) activities of Golgi apparatus-, plasma membrane-, endoplasmic reticulum-, and mitochondria-rich fractions from rat liver were compared at pH 8. Activity was concentrated in the Golgi apparatus fractions, which, on a protein basis, had a specific activity six to eight times that of the total homogenates or purified endoplasmic reticulum fractions. However, only 1–3% of the total activity was recovered in the Golgi apparatus fractions under conditions where 30–50% of the UDPgalactose:N-acetylglucosamine-galactosyl transferase activity was recovered. Considering both recovery of galactosyl transferase and fraction purity, we estimate that approximately 10% of the total thiamine pyrophosphatase activity of the liver was localized within the Golgi apparatus, with a specific activity of about ten times that of the total homogenate. Cytochemically, reaction product was found in the cisternae of the endoplasmic reticulum as well as in the Golgi apparatus. This is in contrast to results obtained in most other tissues, where reaction product was restricted to the Golgi apparatus. Thus, enzymes of rat liver catalyzing the hydrolysis of thiamine pyrophosphate, although concentrated in the Golgi apparatus, are widely distributed among other cell components in this tissue.  相似文献   

17.
Trigonelline demethylating enzyme activity was found widely in animals, plants and microorganisms. Very high enzyme activity of this enzyme was detected in hog liver. Properties of the hog liver enzyme were investigated. Optimum pH for the enzymic reaction was observed at 8.5. The Km value for trigonelline was calculated at 2.77 mM. Addition of any cofactor is not required for the reaction The enzyme activity was inhibited by heavy metal ions. The reaction product was identified as nicotinic acid. Proposed enzyme reaction mechanism and the role of this enzyme in biosynthesis and metabolism of NAD are discussed.  相似文献   

18.
Regulation of the pentose phosphate cycle   总被引:25,自引:12,他引:13       下载免费PDF全文
1. A search was made for mechanisms which may exert a ;fine' control of the glucose 6-phosphate dehydrogenase reaction in rat liver, the rate-limiting step of the oxidative pentose phosphate cycle. 2. The glucose 6-phosphate dehydrogenase reaction is expected to go virtually to completion because the primary product (6-phosphogluconate lactone) is rapidly hydrolysed and the equilibrium of the joint dehydrogenase and lactonase reactions is in favour of virtually complete formation of phosphogluconate. However, the reaction does not go to completion, because glucose 6-phosphate dehydrogenase is inhibited by NADPH (Neglein & Haas, 1935). 3. Measurements of the inhibition (which is competitive with NADP(+)) show that at physiological concentrations of free NADP(+) and free NADPH the enzyme is almost completely inhibited. This indicates that the regulation of the enzyme activity is a matter of de-inhibition. 4. Among over 100 cell constituents tested only GSSG and AMP counteracted the inhibition by NADPH; only GSSG was highly effective at concentrations that may be taken to occur physiologically. 5. The effect of GSSG was not due to the GSSG reductase activity of liver extracts, because under the test conditions the activity of this enzyme was very weak, and complete inhibition of the reductase by Zn(2+) did not abolish the GSSG effect. 6. Preincubation of the enzyme preparation with GSSG in the presence of Mg(2+) and NADP(+) before the addition of glucose 6-phosphate and NADPH much increased the GSSG effect. 7. Dialysis of liver extracts and purification of glucose 6-phosphate dehydrogenase abolished the GSSG effect, indicating the participation of a cofactor in the action of GSSG. 8. The cofactor removed by dialysis or purification is very unstable. The cofactor could be separated from glucose 6-phosphate dehydrogenase by ultrafiltration of liver homogenates. Some properties of the cofactor are described. 9. The hypothesis that GSSG exerts a fine control of the pentose phosphate cycle by counteracting the NADPH inhibition of glucose 6-phosphate dehydrogenase is discussed.  相似文献   

19.
Localization of nucleoside diphosphatase in the onion root tip   总被引:7,自引:0,他引:7  
Summary Nucleoside diphosphatase activity occurs in the Golgi apparatus, on the plasmalemma, between the plasmalemma and the definitive cell wall, and in the endoplasmic reticulum of the onion root tip. The presence and/or relative concentrations of reaction product at each of these cellular sites occur in distinctive developmental patterns within the root. Cells with high NDPase activity at any combination of these sites also produce large amounts of a polysaccharide-rich product. A vacuolar activity also occurs in the pericycle and cortex in a developmentally distinctive pattern, but its location has not been correlated to polysaccharide secretory activity.  相似文献   

20.
A rapid and sensitive assay for kynurenine 3-hydroxylase (KH) has been developed. This radiometric assay is based on the enzymatic synthesis of tritiated water from L-[3,5-3H]kynurenine during the hydroxylation reaction. Radiolabeled water is quantified following selective adsorption of the isotopic substrate and its metabolite with activated charcoal. The assay is suitable for detecting 0.1 pmol enzyme activity per minute per milligram protein in tissues displaying low levels of the enzyme. The amount of water produced in the reaction, as calculated from the tritium released, was stoichiometric with the 3-hydroxykynurenine product detected by HPLC. Rat liver KH was characterized by cofactor specificity and kinetic parameters. NADPH was preferred over NADH as coreductant in the reaction. Tetrahydrobiopterin was not a cofactor. The tissue distribution of KH activity in the rat suggested that the majority of active enzyme is located in liver and kidney. Detectable amounts were found in several other tissues, including brain which had low but significant levels of activity in every region assayed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号