首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 965 毫秒
1.
Mammalian cell-expressed therapeutic proteins are particularly vulnerable to contamination by endogenous retrovirus-like particles (RVLPs). The Viresolve NFR filter was designed to meet the critical requirement of manufacturing a safe and virus-free therapeutic by retaining RVLPs by a minimum of six log reduction value (LRV). The NFR designation refers to retrovirus removal in a normal flow format. To qualify the product, we tested two model viruses: the 78 nm diameter phi6 bacteriophage and the 80-110 nm diameter Xenotropic Murine Leukemia Virus (X-MuLV). Robust retention was demonstrated over a wide range of process parameters. Viresolve NFR filters also retain other model adventitious viruses including 70-85 nm diameter Reovirus 3 (Reo3), 70-90 nm diameter Adenovirus 2 (Ad2), and 53 nm diameter PR772 by >6 LRV. In addition to these model viruses, the filter retains >7 LRV of both the mycoplasma Acholeplasma laidlawii and the bacterium Brevundimonas diminuta. Protein passage is shown to be consistently high (95-100%) for a variety of therapeutic protein products, including monoclonal antibodies. Characterization of the filter in specific applications is made simple by availability of ultralow surface area (5 cm(2)) disks, which are shown to scale linearly to the manufacturing scale pleated-filters. Viresolve NFR filters provide consistent water permeability performance (34-37 LMH/psi) and show very little plugging for all feedstocks evaluated. The Viresolve NFR filter incorporates Retropore, a unique asymmetric polyethersulfone membrane, the surface of which has been modified to minimize protein binding.  相似文献   

2.
Virus filtration (VF) is a key step in an overall viral clearance process since it has been demonstrated to effectively clear a wide range of mammalian viruses with a log reduction value (LRV) > 4. The potential to achieve higher LRV from virus retentive filters has historically been examined using bacteriophage surrogates, which commonly demonstrated a potential of > 9 LRV when using high titer spikes (e.g. 1010 PFU/mL). However, as the filter loading increases, one typically experiences significant decreases in performance and LRV. The 9 LRV value is markedly higher than the current expected range of 4‐5 LRV when utilizing mammalian retroviruses on virus removal filters (Miesegaes et al., Dev Biol (Basel) 2010;133:3‐101). Recent values have been reported in the literature (Stuckey et al., Biotech Progr 2014;30:79‐85) of LRV in excess of 6 for PPV and XMuLV although this result appears to be atypical. LRV for VF with therapeutic proteins could be limited by several factors including process limits (flux decay, load matrix), virus spike level and the analytical methods used for virus detection (i.e. the Limits of Quantitation), as well as the virus spike quality. Research was conducted using the Xenotropic‐Murine Leukemia Virus (XMuLV) for its direct relevance to the most commonly cited document, the International Conference of Harmonization (ICH) Q5A (International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland, 1999) for viral safety evaluations. A unique aspect of this work is the independent evaluation of the impact of retrovirus quality and virus spike level on VF performance and LRV. The VF studies used XMuLV preparations purified by either ultracentrifugation (Ultra 1) or by chromatographic processes that yielded a more highly purified virus stock (Ultra 2). Two monoclonal antibodies (Mabs) with markedly different filtration characteristics and with similar levels of aggregate (<1.5%) were evaluated with the Ultra 1 and Ultra 2 virus preparations utilizing the Planova 20 N, a small virus removal filter. Impurities in the virus preparation ultimately limited filter loading as measured by determining the volumetric loading condition where 75% flux decay is observed versus initial conditions (V75). This observation occurred with both Mabs with the difference in virus purity more pronounced when very high spike levels were used (>5 vol/vol %). Significant differences were seen for the process performance over a number of lots of the less‐pure Ultra 1 virus preparations. Experiments utilizing a developmental lot of the chromatographic purified XMuLV (Ultra 2 Development lot) that had elevated levels of host cell residuals (vs. the final Ultra 2 preparations) suggest that these contaminant residuals can impact virus filter fouling, even if the virus prep is essentially monodisperse. Process studies utilizing an Ultra 2 virus with substantially less host cell residuals and highly monodispersed virus particles demonstrated superior performance and an LRV in excess of 7.7 log10. A model was constructed demonstrating the linear dependence of filtration flux versus filter loading which can be used to predict the V75 for a range of virus spike levels conditions using this highly purified virus. Fine tuning the virus spike level with this model can ultimately maximize the LRV for the virus filter step, essentially adding the LRV equivalent of another process step (i.e. protein A or CEX chromatography). © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:135–144, 2015  相似文献   

3.
Virus filters are widely used in bioprocessing to reduce the risk of virus contamination in therapeutics. The small pores required to retain viruses are sensitive to plugging by trace contaminants and frequently require inline adsorptive prefiltration. Virus spiking studies are required to demonstrate virus removal capabilities of the virus filter using scale down filters. If prefiltration removes viruses and interferes with the measurement of virus filter LRV, the standard approach is to batch prefilter the protein solution, spike with virus, and then virus filter. For a number of proteins, batch prefiltration leads to increased plugging and significantly lower throughputs than inline prefiltration. A novel inline spiking method was developed to overcome this problem. This method allows the use of inline prefiltration with direct measurement of virus filter removal capabilities. The equipment and its operation are described. The method was tested with three different protein feeds, two different parvovirus filters, two virus injection rates; a salt spike, a bacteriophage spike, and two mammalian virus spikes: MMV and xMuLV. The novel inline method can reliably measure LRV at throughputs representative of the manufacturing process. It is recommended for applications where prefiltration is needed to improve throughput, prefiltration significantly reduces virus titer, and virus filter throughput is significantly reduced using batch vs. inline prefiltration. It can even help for the case where the virus preparation causes premature plugging.  相似文献   

4.
Virus retention during ultrafiltration through A/G Technology filter cartridges was investigated to characterize the removal process and validate the degree of virus titre reduction during the filtration of red blood cell haemolysates performed as part of the production of diaspirin crosslinked haemoglobin (DCLHb). When viruses were suspended in phosphate buffered saline solution, retention was greater with larger sized viruses and smaller filter pore size. Virus titre was maintained at starting levels in the filter retentate circuit during the course of filtration, suggesting that the virus removal mechanism is predominantly size exclusion. Evaluation of specific processing variables indicated that the retention of phiX174 virus was increased in the presence of red blood cell haemolysate or at high membrane crossflow rates and transmembrane pressures, while the retention of EMC virus was less sensitive to variations in these parameters. Using these results to design a validation protocol, log reduction values of >7.9 were demonstrated for the retention of human immunodeficiency virus, pseudorabies virus and bovine viral diarrhoea viruses, 7.6 for hepatitis A virus, and 4.2 for porcine parvovirus. It was also shown that the retention of viruses was maintained during repetitive use of the same filter cartridge.  相似文献   

5.
The ability to process high‐concentration monoclonal antibody solutions (> 10 g/L) through small‐pore membranes typically used for virus removal can improve current antibody purification processes by eliminating the need for feed stream dilution, and by reducing filter area, cycle‐time, and costs. In this work, we present the screening of virus filters of varying configurations and materials of construction using MAb solutions with a concentration range of 4–20 g/L. For our MAbs of interest—two different humanized IgG1s—flux decay was not observed up to a filter loading of 200 L/m2 with a regenerated cellulose hollow fiber virus removal filter. In contrast, PVDF and PES flat sheet disc membranes were plugged by solutions of these same MAbs with concentrations >4 g/L well before 50 L/m2. These results were obtained with purified feed streams containing <2% aggregates, as measured by size exclusion chromatography, where the majority of the aggregate likely was composed of dimers. Differences in filtration flux performance between the two MAbs under similar operating conditions indicate the sensitivity of the system to small differences in protein structure, presumably due to the impact of these differences on nonspecific interactions between the protein and the membrane; these differences cannot be anticipated based on protein pI alone. Virus clearance data with two model viruses (XMuLV and MMV) confirm the ability of hollow fiber membranes with 19 ± 2 nm pore size to achieve at least 3–4 LRV, independent of MAb concentration, over the range examined. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
Virus filtration with nanometer size exclusion membranes (“nanofiltration”) is effective for removing infectious agents from biopharmaceuticals. While the virus removal capability of virus removal filters is typically evaluated based on calculation of logarithmic reduction value (LRV) of virus infectivity, knowledge of the exact mechanism(s) of virus retention remains limited. Here, human parvovirus B19 (B19V), a small virus (18–26 nm), was spiked into therapeutic plasma protein solutions and filtered through Planova™ 15N and 20N filters in scaled-down manufacturing processes. Observation of the gross structure of the Planova hollow fiber membranes by transmission electron microscopy (TEM) revealed Planova filter microporous membranes to have a rough inner, a dense middle and a rough outer layer. Of these three layers, the dense middle layer was clearly identified as the most functionally critical for effective capture of B19V. Planova filtration of protein solution containing B19V resulted in a distribution peak in the dense middle layer with an LRV >4, demonstrating effectiveness of the filtration step. This is the first report to simultaneously analyze the gross structure of a virus removal filter and visualize virus entrapment during a filtration process conducted under actual manufacturing conditions. The methodologies developed in this study demonstrate that the virus removal capability of the filtration process can be linked to the gross physical filter structure, contributing to better understanding of virus trapping mechanisms and helping the development of more reliable and robust virus filtration processes in the manufacture of biologicals.  相似文献   

7.
The recently discovered contamination of oral rotavirus vaccines led to exposure of millions of infants to porcine circovirus (PCV). PCV was not detected by conventional virus screening tests. Regulatory agencies expect exclusion of adventitious viruses from biological products. Therefore, methods for inactivation/removal of viruses have to be implemented as an additional safety barrier whenever feasible. However, inactivation or removal of PCV is difficult. PCV is highly resistant to widely used physicochemical inactivation procedures. Circoviruses such as PCV are the smallest viruses known and are not expected to be effectively removed by currently‐used virus filters due to the small size of the circovirus particles. Anion exchange chromatography such as Q Sepharose® Fast Flow (QSFF) has been shown to effectively remove a range of viruses including parvoviruses. In this study, we investigated PCV1 removal by virus filtration and by QSFF chromatography. As expected, PCV1 could not be effectively removed by virus filtration. However, PCV1 could be effectively removed by QSFF as used during the purification of monoclonal antibodies (mAbs) and a log10 reduction value (LRV) of 4.12 was obtained. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1464–1471, 2013  相似文献   

8.
Viral safety is an important prerequisite for clinical immunoglobulin preparations. A common manufacturing practice is to utilize several virus removal/inactivation process steps to ensure the safety of human intravenous immunoglobulin (IVIg). In this regard, we examined the use of Planova 35 nm filters to reduce potential loads of both non-enveloped and enveloped viruses prior to end-stage solvent detergent treatment. The nanofiltration process was validated for removal of a variety of enveloped and non-enveloped viruses ranging in size from 70 nm to 18 nm including: Sindbis virus, Simian Virus 40 (SV40), Bovine Viral Diarrhoea virus (BVDV), Feline Calicivirus, Encephalomyocarditis virus (EMC), Hepatitis A virus (HAV), Bovine Parvovirus (BPV) and Porcine Parvovirus (PPV). The filtration procedure was carried out by first spiking a 7% solution of IVIg with < 10(8) virus. The spiked IVIg solution was then filtered through a 75 nm Planova filter followed by two Planova 35 nm filters in series (75/35/35). The 75 nm prefilter is incorporated into this process to increase the capacity of the 35 nm viral removal filters. As a result of the inclusion of the 75 nm pre-filtration step it was possible to assess the removal of virus by the 35 nm filters independent of possible aggregation of the initial viral spiking material. Samples were collected at each step and immediately titred by viral plaque assay. A process control sample of the spiked load solution was held at the same conditions for the duration of the filtration process and then titred to determine the extent to which antibody neutralization may have contributed to overall viral reduction. Control assays of spiked IVIg were performed to establish the degree of toxicity of the IVIg solution to the indicator cell lines and the extent to which the IVIg interfered with plaque formation in the assay system. This combined data was used to establish assay sensitivity for the calculation of log removal by the filtration process. It was noted that toxicity/interference effects could have a significant effect upon apparent log reductions, and these effects could vary greatly, even within viruses of the same family. The results of these studies indicate that 35 nm filtration is very effective for removing substantial quantities of both non-enveloped and enveloped viruses from IVIg. Complete clearance (to the limits of detection of the assay) was obtained for all viruses larger than 35 nm. Interestingly, viruses reported to have mean diameters of less than 35 nm (EMC and HAV) were at least partially removed by the filtration (4.3 and > 4.7 logs removal, respectively). Even small viruses such as PPV were to some extent removed from the IVIg solution by the filters (2.6 logs removal). Reduction of BPV would not be assessed due to extensive neutralization and interference with plaque formation by the IVIg. Sindbis and SV40 also were subject to neutralization and assay interference due to the IVIg, though to a lesser extent. We conclude from these studies that the 35 nm mean pore size is functionally efficient in removal of smaller size viruses from spiked IVIg concentrates.  相似文献   

9.
Protein A chromatography is an effective capture step to separate Fc-containing biopharmaceuticals from cell culture impurities but is generally not effective for virus removal, which tends to vary among different products. Previous findings have pointed to the differences in feedstocks to protein A, composed of the products and other cell culture-related impurities. To separate the effect of the feedstock components on virus removal, and understand why certain monoclonal antibody (mAb) products have low virus log reduction values (LRVs) across protein A chromatography, we investigated the partitioning of three types of viruses on Eshmuno® A columns. Using pure mAbs, we found that low LRVs were correlated with the presence of the particular mAb product itself, causing altered partitioning patterns. Three virus types were tested, and the trend in partitioning was the same for retrovirus-like particles (RVLPs) expressed in the cell substrate, and its model virus xenotropic murine leukemia virus (XMuLV), whereas slightly different for murine minute virus. These results were extended from previous observation described by Bach and Connell-Crowley (2015) studying XMuLV partitioning on MabSelect SuRe columns, providing further evidence using additional types of viruses and resin. Other product-specific cell culture impurities in harvested cell culture fluid played a lesser role in causing low LRVs. In addition, using high throughput screening (HTS) methods and Eshmuno® A resin plates, we identified excipients with ionic and hydrophobic properties that could potentially alleviate the mAb-induced LRV reduction, indicating that both ionic and hydrophobic interactions were involved. More excipients of such nature or combinations, once optimized, can potentially be used as load and/or wash additives to improve virus removal by protein A. We have demonstrated that HTS is a valuable tool for this type of screening, whether to gain deeper understanding of a mechanism, or to provide guidance during the optimization of protein A process with improved virus removal.  相似文献   

10.

Background  

Viral zoonosis, the transmission of a virus from its primary vertebrate reservoir species to humans, requires ubiquitous cellular proteins known as receptor proteins. Zoonosis can occur not only through direct transmission from vertebrates to humans, but also through intermediate reservoirs or other environmental factors. Viruses can be categorized according to genotype (ssDNA, dsDNA, ssRNA and dsRNA viruses). Among them, the RNA viruses exhibit particularly high mutation rates and are especially problematic for this reason. Most zoonotic viruses are RNA viruses that change their envelope proteins to facilitate binding to various receptors of host species. In this study, we sought to predict zoonotic propensity through the analysis of receptor characteristics. We hypothesized that the major barrier to interspecies virus transmission is that receptor sequences vary among species--in other words, that the specific amino acid sequence of the receptor determines the ability of the viral envelope protein to attach to the cell.  相似文献   

11.
The potential of viral contamination is a regulatory concern for continuous cell line-derived pharmaceutical proteins. Complementary and redundant safety steps, including an evaluation of the viral clearance capacity of unit operations in the purification process, are performed prior to registration and marketing of biotechnology pharmaceuticals. Because process refinement is frequently beneficial, CBER/FDA has published guidance facilitating process improvement by delineating specific instances where the bracketing and generic approaches are appropriate for virus removal validation. In this study, a generic/matrix study was performed using Q-Sepharose Fast Flow (QSFF) chromatography to determine if bracketing and generic validation can be applied to anion exchange chromatography. Key operational parameters were varied to upper and lower extreme values and the impact on viral clearance was assessed using simian virus 40 (SV40) as the model virus. Operational ranges for key chromatography parameters were identified where an SV40 log(10) reduction value (LRV) of >or=4.7 log(10) is consistently achieved. On the basis of the apparent robustness of SV40 removal by Q-anion exchange chromatography, we propose that the concept of "bracketed generic" validation can be applied to this and potentially other chromatography unit operations.  相似文献   

12.
Viral contamination is an inherent risk during the manufacture of biopharmaceuticals. As such, biopharmaceutical companies must demonstrate the viral clearance efficacy of their downstream process steps prior to clinical trials and commercial approval. This is accomplished through expensive and logistically challenging spiking studies, which utilize live mammalian viruses. These hurdles deter companies from analyzing viral clearance during process development and characterization. We utilized a noninfectious minute virus of mice-mock virus particle (MVM-MVP) as a surrogate spiking agent during small scale viral filtration (VF) and anion exchange chromatography (AEX) studies. For VF experiments, in-process mAb material was spiked and processed through Asahi Kasei P15, P20, P35, and BioEX nanofilters. Across each filter type, flux decay profiles and log reduction values (LRVs) were nearly identical for either particle. For AEX experiments, loads were conditioned with various amounts of sodium chloride (9, 20, 23, and 41 mS/cm), spiked with either particle and processed through a Q-SFF packed column. LRV results met our expectations of predicting MVM removal.  相似文献   

13.
The contamination of oral rotavirus vaccines by porcine circovirus (PCV) raised questions about potential PCV contamination of other biological products when porcine trypsin or pepsin is used in production process. Several methods can be potentially implemented as a safety barrier when animal derived trypsin or pepsin is used. Removal of PCV is difficult by the commonly used viral filters with the pore size cutoff of approximately 20 nm because of the smaller size of PCV particles that are around 17 nm. It was speculated that operating the chromatography step at a pH higher than pepsin's low pI, but lower than pIs, of most viruses would allow the pepsin to flow through the resin and be recovered from the flow through pool whilst the viruses would be retained on the resin. In this study, we investigated low pH inactivation of viruses including PCV Type 1 (PCV1) and PCV1 removal by cation exchange chromatography (CEX) in the presence of pepsin. Both parvovirus and PCV1 could be effectively inactivated by low pH and PCV1 could be removed by POROS 50HS CEX. The POROS 50HS method presented in this article is helpful for designing other CEX methods for the same purpose and not much difference would be expected for similar product intermediates and same process parameters. While the effectiveness needs to be confirmed for specific applications, the results demonstrate that both low pH (pH 1.7) and CEX methods were successful in eliminating PCV1 and thus either can be considered as an effective virus barrier.  相似文献   

14.
The use of bioreactors coupled to membrane-based perfusion systems enables very high cell and product concentrations in vaccine and viral vector manufacturing. Many virus particles, however, are not stable and either lose their infectivity or physically degrade resulting in significant product losses if not harvested continuously. Even hollow fiber membranes with a nominal pore size of 0.2 µm can retain much smaller virions within a bioreactor. Here, we report on a systematic study to characterize structural and physicochemical membrane properties with respect to filter fouling and harvesting of yellow fever virus (YFV; ~50 nm). In tangential flow filtration perfusion experiments, we observed that YFV retention was only marginally determined by nominal but by effective pore sizes depending on filter fouling. Evaluation of scanning electron microscope images indicated that filter fouling can be reduced significantly by choosing membranes with (i) a flat inner surface (low boundary layer thickness), (ii) a smooth material structure (reduced deposition), (iii) a high porosity (high transmembrane flux), (iv) a distinct pore size distribution (well-defined pore selectivity), and (v) an increased fiber wall thickness (larger effective surface area). Lowest filter fouling was observed with polysulfone (PS) membranes. While the use of a small-pore PS membrane (0.08 µm) allowed to fully retain YFV within the bioreactor, continuous product harvesting was achieved with the large-pore PS membrane (0.34 µm). Due to the low protein rejection of the latter, this membrane type could also be of interest for other applications, that is, recombinant protein production in perfusion cultures.  相似文献   

15.
We aimed to investigate the effect of virus‐spiking conditions on the filter performance (flux, flux decay, and parvovirus reduction) of the small virus filter Planova? 20N. We used three kinds of porcine parvovirus (PPV) stocks: serum, serum‐free, and purified. The flux profile with PPV spiking was similar to that without spiking for normal load filtration of about 250–300 L/m2. High volume (3 vol %) of serum‐free PPV and 1 vol % serum PPV reduced the flux to some extent for high‐load filtration (over 10 h, ca., 500 L/m2, 5 mg/mL IgG solution). Log reduction value (LRV) of PPV was maintained at a high level (>5) over the filtration volume. Flux for Planova? 20N was only minimally affected by the use of different virus stocks for spiking. Transmission electron microphotography showed that the distribution of PPV particles captured inside the membrane wall was reached until the ?60% thickness of the membrane, showing that the membrane of Planova? 20N has a thick effective layer for virus removal. These results provided evidence for the robustness of the filter performance of Planova? 20N, showing that it was not easily affected by virus spiking conditions and that it has a large capacity for high‐load conditions. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

16.
Minimized virus binding for tests of barrier materials.   总被引:7,自引:5,他引:2       下载免费PDF全文
Viruses are used to test the barrier properties of materials. Binding of virus particles during passage through holes in the material may yield misleading test results. The choices of challenge virus and suspending medium may be important for minimizing confounding effects that might arise from such binding. In this study, different surrogate viruses, as well as different support media, were evaluated to determine optimal test parameters. Two membranes with high-binding properties (nitrocellulose and cationic polysulfone) were used as filters to compare binding activities of different surrogate challenge viruses (MS2, phi X174, T7, PRD1, and phi 6) in different media. The media consisted of buffered saline with surfactants, serum, or culture broth as additives. In addition, elution rates of viruses that bound to the membranes were determined. The results suggest that viruses can bind by hydrophobic and electrostatic interactions, with phi X174 displaying the lowest level of binding by either process. The nonionic detergents Triton X-100 and Tween 80 (0.1%) equally minimized hydrophobic interactions. Neither anionic nor cationic surfactants were as effective at nontoxic levels. Serum was effective at reducing both hydrophobic and electrostatic binding, with 2% being sufficient for eliminating binding under our test conditions. Thus, phi X174 remains the best choice as a surrogate virus to test barrier materials, and Triton X-100 (0.1%) remains a good choice for reducing hydrophobic binding. In addition, binding of viruses by barrier materials is unlikely to prevent passage of blood-borne pathogens.  相似文献   

17.
In virus clearance study (VCS) design, the amount of virus loaded onto the virus filters (VF) must be carefully controlled. A large amount of virus is required to demonstrate sufficient virus removal capability; however, too high a viral load causes virus breakthrough and reduces log reduction values. We have seen marked variation in the virus removal performance for VFs even with identical VCS design. Understanding how identical virus infectivity, materials and operating conditions can yield such different results is key to optimizing VCS design. The present study developed a particle number-based method for VCS and investigated the effects on VF performance of discrepancies between apparent virus amount and total particle number of minute virus of mice. Co-spiking of empty and genome-containing particles resulted in a decrease in the virus removal performance proportional to the co-spike ratio. This suggests that empty particles are captured in the same way as genome-containing particles, competing for retention capacity. In addition, between virus titration methods with about 2.0 Log10 difference in particle-to-infectivity ratios, there was a 20-fold decrease in virus retention capacity limiting the throughput that maintains the required LRV (e.g., 4.0), calculated using infectivity titers. These findings suggest that ignoring virus particle number in VCS design can cause virus overloading and accelerate filter breakthrough. This article asserts the importance of focusing on virus particle number and discusses optimization of VCS design that is unaffected by virological characteristics of evaluation systems and adequately reflect the VF retention capacity.  相似文献   

18.
Hu AY  Tseng YF  Weng TC  Liao CC  Wu J  Chou AH  Chao HJ  Gu A  Chen J  Lin SC  Hsiao CH  Wu SC  Chong P 《PloS one》2011,6(1):e14578

Background

Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK) cells grown in a serum-free (SF) medium microcarrier cell culture system.

Principal Finding

The current study has evaluated the performance of cell adaptation switched from serum-containing (SC) medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3×106 cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA) units/50 µL and 7.1±0.3×108 pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 µg/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera.

Conclusions

The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production.  相似文献   

19.
Virus removal from a high purity factor IX, Replenine®-VF, by filtration using a Planova 15N filter has been investigated. A wide range of relevant and model enveloped and non-enveloped viruses, of various sizes, were effectively removed by this procedure. Virus removal was confirmed to be effective when different batches of filter were challenged with poliovirus-1. It was confirmed that intentionally modified filters that failed the leakage test had completely lost the ability to remove virus, thus confirming that this test demonstrates gross filter failure. In the case of the more sensitive integrity test based on gold particle removal, it was found that a pre-wash step was not essential. Planova filters that had been modified by sodium hydroxide treatment to make them more permeable, and filters manufactured with varying pore-sizes over the range of 15–35 nm, were tested. The integrity test value that resulted in the removal of >4 log10 of poliovirus-1 from the product correlated with that recommended by the filter manufacturer. Virus removal from the product was not influenced by filter load mass, flow-rate or pressure. These studies confirm the robustness of this filtration procedure and allow suitable process limits to be set for this manufacturing step.  相似文献   

20.
Recombinant adeno-associated viral vectors (rAAV) are being developed as gene therapy delivery vehicles and as genetic vaccines, and some of the most scaleable manufacturing methods for rAAV use live adenovirus to induce production. One aspect of establishing safety of rAAV products is therefore demonstrating adequate and reliable clearance of this helper virus by the vector purification process. The ICH Q5A regulatory guidance on viral safety provides recommendations for process design and characterization of viral clearance for recombinant proteins, and these principles were adapted to a rAAV serotype 1 purification process for clinical vectors. Specific objectives were to achieve overall adenovirus clearance factors significantly greater than input levels by using orthogonal separation and inactivation methods, and to segregate adenovirus from downstream operations by positioning a robust clearance step early in the process. Analytical tools for process development and characterization addressed problematic in-process samples, and a viral clearance validation study was performed using adenovirus and two non-specific model viruses. Overall clearance factors determined were >23 LRV for adenovirus, 11 LRV for BVDV, and >23 LRV for AMuLV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号