共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Abstract A mutant strain of Schizosaccharomyces pombe lacking dipeptidyl aminopeptidase yspI was isolated from a strain already defective in aminopeptidase activity by means of a staining technique with the chromogenic substrate ala-pro-4-methoxy-β-naphthylamide to screen colonies for the absence of the enzyme. The defect segregated 2+ :2− in meiotic tetrads, indicating a single chromosomal gene mutation, which was shown to be recessive. Gene dosage experiments indicated that the mutation resides in the structural gene of dipeptidyl aminopeptidase yspI, dpa 1+ . The dpa 1+ gene was located on chromosome III by using l m- fluorophen-ylalanine-induced haploidization and mitotic analysis. dpa1 mutants did not show any obvious phenotype under a variety of conditions tested. 相似文献
5.
6.
Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early‐stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+, the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9‐1‐1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9‐1‐1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9‐1‐1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation. 相似文献
7.
Lenka Halova David Cobley Mirita Franz-Wachtel Tingting Wang Kaitlin R. Morrison Karsten Krug Nicolas Nalpas Boris Ma
ek Iain M. Hagan Sean J. Humphrey Janni Petersen 《Open biology》2021,11(4)
Fluctuations in TOR, AMPK and MAP-kinase signalling maintain cellular homeostasis and coordinate growth and division with environmental context. We have applied quantitative, SILAC mass spectrometry to map TOR and nutrient-controlled signalling in the fission yeast Schizosaccharomyces pombe. Phosphorylation levels at more than 1000 sites were altered following nitrogen stress or Torin1 inhibition of the TORC1 and TORC2 networks that comprise TOR signalling. One hundred and thirty of these sites were regulated by both perturbations, and the majority of these (119) new targets have not previously been linked to either nutritional or TOR control in either yeasts or humans. Elimination of AMPK inhibition of TORC1, by removal of AMPKα (ssp2::ura4+), identified phosphosites where nitrogen stress-induced changes were independent of TOR control. Using a yeast strain with an ATP analogue-sensitized Cdc2 kinase, we excluded sites that were changed as an indirect consequence of mitotic control modulation by nitrogen stress or TOR signalling. Nutritional control of gene expression was reflected in multiple targets in RNA metabolism, while significant modulation of actin cytoskeletal components points to adaptations in morphogenesis and cell integrity networks. Reduced phosphorylation of the MAPKK Byr1, at a site whose human equivalent controls docking between MEK and ERK, prevented sexual differentiation when resources were sparse but not eliminated. 相似文献
8.
Kazuhiro Hamada Yasuo Nakatomi Masako Osumi Shoji Shimada 《FEMS microbiology letters》1996,136(3):257-262
Abstract Hydrostatic pressure stress and a dye plate method were first used to investigate the direct induction of homozygous diploids from the haploid yeast Schizosaccharomyces pombe . Above 100 MPa at 25 °C for 10 min, pressure stress greatly inactivated the haploid strains of JY1 (L972 h − ) JY3 (L975 h 90 ) and JY334 ( ade 6-M216 leul h + ). At the same time, when pressure stressed cells of these strains at more than 100–200 MPa were spread on a dye plate, some pressure-effected visible colonies were stained violet (variant colonies); the rest were stained pink, similar to colonies originating from haploid cells that were not pressure-stressed. Based on the cell size, DNA content, crosses, and random spore analyses for the segregation of mating types or auxotrophic markers, variant cells originating from color changed colonies of JY1 after pressure stress were very stable and found to be homozygous diploid with an h− / h− genotype at the mating-type locus. From these results we conclude that pressure stress in combination with a dye plate is a simple and useful method for direct induction of homozygous diploid cells with very high stability. 相似文献
9.
10.
11.
The fission yeast Schizosaccharomyces pombe detoxifies cadmium by synthesizing phytochelatins, peptides of the structure (gamma-GluCys)nGly, which bind cadmium and mediate its sequestration into the vacuole. The fission yeast protein HMT2, a mitochondrial enzyme that can oxidize sulphide, appears to be essential for tolerance to multiple forms of stress, including exposure to cadmium. We found that the hmt2- mutant is unable to accumulate normal levels of phytochelatins in response to cadmium, although the cells possess a phytochelatin synthase that is active in vitro. Radioactive pulse-chase experiments demonstrated that the defect lies in two steps: the synthesis of phytochelations and the upregulation of glutathione production. Phytochelatins, once formed, are stable. hmt2- cells accumulate high levels of sulphide and, when exposed to cadmium, display bright fluorescent bodies consistent with cadmium sulphide. We propose that the precipitation of free cadmium blocks phytochelatin synthesis in vivo, by preventing upregulation of glutathione production and formation of the cadmium-glutathione thiolate required as a substrate by phytochelatin synthase. Thus, although sulphide is required for phytochelatin-mediated metal tolerance, aberrantly high sulphide levels can inhibit this pathway. Precise regulation of sulphur metabolism, mediated in part by HMT2, is essential for metal tolerance in fission yeast. 相似文献
12.
M. Shimanuki F. Miki D.-Q. Ding Y. Chikashige Y. Hiraoka T. Horio O. Niwa 《Molecular & general genetics : MGG》1997,254(3):238-249
In the meiotic prophase nucleus of the fission yeast Schizosaccharomyces pombe, chromosomes are arranged in an oriented manner: telomeres cluster in close proximity to the spindle pole body (SPB), while
centromeres form another cluster at some distance from the SPB. We have isolated a mutant, kms1, in which the structure of the meiotic prophase nucleus appears to be distorted. Using specific probes to localize the SPB
and telomeres, multiple signals were observed in the mutant nuclei, in contrast to the case in wild-type. Genetic analysis
showed that in the mutant, meiotic recombination frequency was reduced to about one-quarter of the wild-type level and meiotic
segregation was impaired. This phenotype strongly suggests that the telomere-led rearrangement of chromosomal distribution
that normally occurs in the fission yeast meiotic nucleus is an important prerequisite for the efficient pairing of homologous
chromosomes. The kms1 mutant was also impaired in karyogamy, suggesting that the kms1
+ gene is involved in SPB function. However, the kms1
+ gene is dispensable for mitotic growth. The predicted amino acid sequence of the gene product shows no significant similarity
to known proteins.
Received: 5 September 1996 / Accepted: 21 November 1996 相似文献
13.
The effects of external K+ , H+ and Ca2+ concentrations on the intracellular K+ concentration, [K+ ]i, and the K+ -ATPase activity in 2-day-old mung bean roots [ Vigna mungo (L.) Hepper] were investigated. [K+ ]i, in mung bean roots was markedly decreased by external K+ or H+ stress and did not recover the initial value even after the stress was removed. This decrease in [K+ ]i, gradually disappeared with the addition of (Ca2+ . Ca2+ may offset the harmful effects of ion stress. Ca2+ seems to have two effects on K+ transport; control of K+ permeability and activation of K+ uptake, although K+ -ATPase activity was inhibited by Ca2+ concentrations higher than 10–4 M. We suggest that Ca2+ activates K+ uptake indirectly through the acidification of the cytoplasm. 相似文献
14.
15.
We previously identified four nuclear genes (caf1
+
to caf4
+) in Schizosaccharomyces pombe, mutations in which can confer caffeine resistance. Here we report the cloning and sequencing of caf1
+, caf2
+ and caf4
+. All three genes are allelic to genes (hba1
+
, crm1
+ and trr1
+
, respectively) involved in multidrug resistance mechanisms or in stress response systems. In agreement with this the caffeine-resistant
mutants caf1(hba1)-21, caf2(crm1)-3 and caf4(trr1)-83 are also resistant to brefeldin. Disruption of caf1(hba1)
+
and caf4(trr1)
+
makes cells sensitive to high pH. The overlapping ranges of pleiotropic effects and the genetic interaction detected between
caf1(hba1)
+
and caf2(crm1)
+
suggest that the three genes function in interlinked systems.
Received: 9 March 1998 / Accepted: 16 September 1998 相似文献
16.
Sune Pettersson 《Physiologia plantarum》1986,66(1):122-128
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+ (86 Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small. 相似文献
17.
18.
BENJAMIN JACOBY 《Physiologia plantarum》1975,35(1):1-4
The light-stimulated absorption of 86Rb+ by Phaseolus vulgaris L. leaf slices was found to be sensitive to dichlorophenyldimethylurea in air as well as in nitrogen, whereas light-stimulated 22Na+ absorption in nitrogen was not sensitive to this inhibitor. The absorption of 22Na+ is not affected by light in air. The absorption of 42K+ is enhanced by a dichlorophenyldimethylurea-insensitive light effect under anaerobic conditions and further increased by light in the absence of the inhibitor. Light-enhanced 42K+ absorption in air was also inhibited by dichlorophenyldimethylurea. Previous work showed that light-stimulated 86Rb+ and 42K+ absorption by Phaseolus vulgaris leaf slices is restricted to the guard cells. The present results are discussed with reference to the effect of light on stomatal opening. 相似文献
19.
20.
Manuel Diaz de la Guardia José M. Fournier Manuel Benlloch 《Physiologia plantarum》1985,63(2):176-180
Young sunflower plants ( Helianthus annuus L. cv. Halcón), grown in nutrient solution at two K+ levels (0.25 and 2.5 m M ) were used to study the effect of K+ content in the root on uptake and transport of K+ to the exuding stream of decapitated plants. Roots of plants grown in low K+ gave higher exudation flux, higher K+ concentration in exudate and higher K+ flux than high K+ roots. After 6 h of uptake the K+ flux in low K+ roots was about three times that in high K+ roots. When the roots were kept in a nutrient solution in which Rb+ replaced K+ , low K+ roots exuded much more Rb+ than K+ after the first 2 h, whereas high K+ roots exuded about similar amounts of K+ and Rb+ . In intact plants grown at three different K+ levels (0.1, 1.0 and 10.0 m M ), there was an inverse relationship between the K+ level in the nutrient solution and the Rb+ accumulated in the roots or transported to the shoot. The results suggest that the transport of ions from xylem parenchyma to stele apoplast may be controlled by ions coming down from the shoot in sieve tubes. 相似文献