首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applications of cellulose xanthate equivalent to 50 kg cellulose/ha to fresh seedbeds preserved surface microtopography and prevented capping after rainfall. Numbers of weed seedlings were up to 50% greater than on untreated soil where capping occurred. The efficiency of nine soil-acting herbicides was not impaired when applied at normal rates either before or after cellulose xanthate. There was no evidence of interaction and the numbers of surviving weeds were proportional to the numbers where no herbicide had been applied. With propachlor, however, weed control was consistently less when applied shortly before or after cellulose xanthate, and analyses showed that in the presence of the soil conditioner the rate of herbicide loss was enhanced. This effect decreased the longer propachlor application was delayed, but was still evident with an interval of 96 h.  相似文献   

2.
Soil microcosm experiments were used to investigate the effects on growth and activity of soil microorganisms of an herbicide combination (60% bromoxynil + 3% prosulfuron) frequently used to provide a broad spectrum control of weed species. Culturable aerobic bacteria, fungi, and actinomycetes, the fundamental groups of heterotrophic microorganisms, and nitrifiers, considered a very sensitive group to these compounds, were evaluated. Since herbicides have been found to inhibit decomposition of cellulose in soil, the effects on cellulolytic bacteria and fungi were determined. Dehydrogenase activity as a measure of microbial activity was another parameter considered. The results emphasized a tendency of reversible stimulatory/inhibitory effects of the tested compounds on soil microorganisms, with fungi as an exception. A long-lasting negative action on the activity of the dehydrogenase (DHA), commonly used as an index of the overall microbial activity in soil, was found. The magnitude of these effects were dependent on the assayed concentrations of the herbicides mixture. We concluded that the presence of bromoxynil + prosulfuron could induce significant changes in the microbial populations of the soil, concerning the activity and balance of microbial community. Possible environmental risks must be considered. Dehydrogenase activity was shown to be an important indicator of side-effects attributed to these herbicides.  相似文献   

3.
In the world, maize covers about 150 million hectares, following close to rice and wheat. (Balteanu 2000) In Romania, maize culture covers an area of more than 3,500,000 hectares from the overall arable soil, being cultivated in all Romanian districts. Chemical weed control took the greatest extension in the world, at the same time with the synthesis of Atrazine, in 1956, in the laboratories of J.R. Geigy Company, as a super-selective herbicide for the maize culture. This is why many researchers from all continents studied weed control of maize culture, using Atrazine together with other 50 herbicides synthesized until 2004. In the embanked meadow of the Danube, from the 500,000 hectares of arable soil, the maize covers the greatest area. For this reasons, the chemical weed control was granted a great attention by using different herbicides based on Atrazine, Alachlor, Acetochlor, Butilat, Pendimethalin, Dicamba, 2,4-D. At the same time, in the experiments from the Danube Meadow, the authors also studied the efficiency of some combined herbicides: Butizin, Magnific, Guardian Extra is Tazastomp.  相似文献   

4.
Four herbicides [glyphosate (GLYT), an amino acid synthesis inhibitor; glufosinate (GLUF), a glutamine synthetase inhibitor; fomesafen (FOME), a protoporphyrinogen oxidase inhibitor; and chlorimuron ethyl (CLIM), an acetolactate synthase inhibitor] were used to examine the influence of time of day of application on the control of a variety of annual broadleaf weeds in field studies conducted in Minnesota (five studies on GLYT and GLUF, three studies on FOME and CLIM). All herbicides were applied with an adjuvant at recommended high and low (half or quarter strength) rates every 3h between 06:00 and 24:00h local time. Visual ratings of percent weed control evaluated at 14d were analyzed by herbicide and application rate for each study and across studies for time-of-day effect by analysis of variance (ANOVA) and single cosinor. A circadian response to each herbicide was found, with greatest weed control observed between 09:00 and 18:00h. Increasing the herbicide application rate did not overcome the time-of-day effect (ANOVA: p≤0.008 for time-of-day effect for each herbicide and application rate). The least-squares fit of a 24h cosine was significant (p≤0.001) for each herbicide and application rate, with double amplitudes of 18–82% (units=% visual control) and estimated peaks (acrophases) near midday between 12:40 and 13:35h. Analysis of residuals obtained from multiple regression that included weed height, herbicide rate, temperature, and relative humidity as independent factors also found a significant time-effect by both ANOVA and cosinor for each herbicide and rate, with acrophases advancing significantly by 3 to 7h for GLYT and GLUF, but not for FOME or CLIM. These results suggest that the four herbicides, while belonging to different families with different modes of action, may reveal different peak times of efficacy when adjusting for environmental factors. Nonetheless, each displays similar circadian patterns when influenced by these factors under natural seasonal field conditions. The within-day rhythmic differences found in weed control are large enough to warrant consideration of the practical financial and environmental importance of the time-of-day that these and other herbicides are applied.  相似文献   

5.
Four herbicides [glyphosate (GLYT), an amino acid synthesis inhibitor; glufosinate (GLUF), a glutamine synthetase inhibitor; fomesafen (FOME), a protoporphyrinogen oxidase inhibitor; and chlorimuron ethyl (CLIM), an acetolactate synthase inhibitor] were used to examine the influence of time of day of application on the control of a variety of annual broadleaf weeds in field studies conducted in Minnesota (five studies on GLYT and GLUF, three studies on FOME and CLIM). All herbicides were applied with an adjuvant at recommended high and low (half or quarter strength) rates every 3h between 06:00 and 24:00h local time. Visual ratings of percent weed control evaluated at 14d were analyzed by herbicide and application rate for each study and across studies for time-of-day effect by analysis of variance (ANOVA) and single cosinor. A circadian response to each herbicide was found, with greatest weed control observed between 09:00 and 18:00h. Increasing the herbicide application rate did not overcome the time-of-day effect (ANOVA: p≤0.008 for time-of-day effect for each herbicide and application rate). The least-squares fit of a 24h cosine was significant (p≤0.001) for each herbicide and application rate, with double amplitudes of 18-82% (units=% visual control) and estimated peaks (acrophases) near midday between 12:40 and 13:35h. Analysis of residuals obtained from multiple regression that included weed height, herbicide rate, temperature, and relative humidity as independent factors also found a significant time-effect by both ANOVA and cosinor for each herbicide and rate, with acrophases advancing significantly by 3 to 7h for GLYT and GLUF, but not for FOME or CLIM. These results suggest that the four herbicides, while belonging to different families with different modes of action, may reveal different peak times of efficacy when adjusting for environmental factors. Nonetheless, each displays similar circadian patterns when influenced by these factors under natural seasonal field conditions. The within-day rhythmic differences found in weed control are large enough to warrant consideration of the practical financial and environmental importance of the time-of-day that these and other herbicides are applied.  相似文献   

6.
In the past years livid amaranth (Amaranthus blitum) is observed increasingly in begonia production fields. Control of weeds in begonia is generally done by a combined application of the soil herbicides isoxaben + simazin followed 10 days later by application of the contact herbicide bentazone. This treatment usually controls the weed population sufficiently with exception of amaranth. In 2003 a field trial was conducted to evaluate control of livid amaranth in tuberous begonia with isoxaben, simazin. S-metolachloor, phenmedipham + desmedipham and bentazone. These herbicides were used as combinations of soil treatment and contact herbicides. The results suggest that a soil treatment of isoxaben + S-metolachloor significantly reduces livid amaranth compared to isoxaben + simazin, without a pronounced negative effect on tuber yield. Application of phenmedipham + desmedipham however did not improve control of livid amaranth compared to bentazone.  相似文献   

7.
Little information is available on the use of woven black polypropylene weed control mat in ecological restoration. At a 6.5‐ha area of fertile Vertosol soil ex‐farmland near Perth, Western Australia, concerted efforts to control weed using conventional methods such as herbicides, fire and cultivation proved ineffective. After 5 years, weeds still dominated the site, and native plant establishment was poor. Small‐scale preliminary trials of various weed suppression coverings were then undertaken, with plastic weed mat the most cost‐effective in overcoming the weed threshold, permitting native tree seedling establishment. In a larger‐scale trial of weed mat over the whole site, weeds were controlled and high levels of native plant establishment achieved, with a diverse range of understorey, midstorey and overstorey species providing 56% projected foliage cover. This ensured that completion criteria were finally satisfied. These results suggest that weed mat may be effective for weed control in large‐scale restoration where conventional methods have failed, as long as ultimate removal or decomposition and other issues are addressed.  相似文献   

8.
The availability of orthophosphate (Pi) is a key determinant of crop productivity because its accessibility to plants is poor due to its conversion to unavailable forms. Weed's competition for this essential macronutrient further reduces its bio‐availability. To compensate for the low Pi use efficiency and address the weed hazard, excess Pi fertilizers and herbicides are routinely applied, resulting in increased production costs, soil degradation and eutrophication. These outcomes necessitate the identification of a suitable alternate technology that can address the problems associated with the overuse of Pi‐based fertilizers and herbicides in agriculture. The present review focuses on phosphite (Phi) as a novel molecule for its utility as a fertilizer, herbicide, biostimulant and biocide in modern agriculture. The use of Phi‐based fertilization will help to reduce the consumption of Pi fertilizers and facilitate weed and pathogen control using the same molecule, thereby providing significant advantages over current orthophosphate‐based fertilization.  相似文献   

9.
It is clearly seen from data that roots of Convolvulus arvensis L. have more and less intensive regenerative period during growing season. The more intensive period is in autumn, because in that time roots culminate nutrients, carbohydrate as starch and sugar. The less intensive regenerative or shoot-growing period is in spring, called "late spring bud dormancy". Experiments were conducted to get more information and further details about the regenerative capacity of roots close to and far from the collar of Convolvulus arvensis L. Root segments closer to collar have an intensive regenerative capacity than those ones further to collar. By data of Bakke et al. (1939) is well known, roots exhumed from deep soil layers are able to create shoots with low intensity. So finally we can exclaim that regenerative capacity is decreasing further to collar. Using mechanical weed control it is sufficient to till the upper layer of soil, but many times. Chemical treatments are most effective in the integrated weed control. It is clearly seen that auxin-type herbicide such as 2,4-D, fluroxipir, MCPA. dicamba give the best result. They gave 95% weed control effect used them separately or in combination with other herbicides. Combination of Banvel 480 S (dicamba) and Logran 75 WG (triasulfuron) introduced 95% weed control effect. Only one time got absolutely 100% weed control effect, in the case of Glyphosate active substance. Caused total plant destruction. Excellent result was given with the application of Pledge 50WP (flumioxazin). Herbicides mentioned above are absolutely allowed to take an important and significant part in chemical plant protection against Convolvulus arvensis L. Other herbicides like Granstar 75DF (tribenuron-methyl), Basis 75DF (rimsulfuron + tifensulfuron-methyl) and Huszár (jodosulfuron-methyl-sodium + mefenpir-diethyl) are not so effective against Convolvulus arvensis L., as compared to the previous ones.  相似文献   

10.
Resistances to antibiotics and pesticides except herbicides rapidly developed following their introduction. Despite repeated use of herbicides only a few cases of acquired genetic resistance have been reported. By extrapolation from analogous situations, it is suggested that this is due to a combination of low selection pressure of most herbicides, lower fitness of resistant weed strains in the absence of herbicide, the ability of herbicide thinned strands of susceptible weeds to produce relatively more seeds, as well as to the large soil reservoir of susceptible weed seeds. The few reported cases of resistance are to persistent, high selection pressure herbicides supporting our contentions.  相似文献   

11.
A Structure-Activity Study with Aryl Acylamidases   总被引:1,自引:0,他引:1       下载免费PDF全文
We examined the relationship between chemical structure and biodegradability of acylanilide herbicides by using a set of model compounds. Four bacterial isolates (one gram-negative and three gram-positive) that grew on acetanilide were used. These soil isolates cleaved the amide bond of acetanilide via an aryl acylamidase reaction, producing aniline and the organic acid acetate. A series of acetanilide analogs with alkyl substitutions on the nitrogen atom or the aromatic ring were tested for their ability to induce aryl acylamidase activity and act as substrates for the enzyme. The substrate range, in general, was limited to those analogs not disubstituted in the ortho position of the benzene ring or which did not contain an alkyl group on the nitrogen atom. These same N-substituted compounds did not induce enzyme activity either, whereas the ortho-substituted compounds could in some cases.  相似文献   

12.
1. A cactus, Opuntia stricta , has invaded almost 16 000 ha of conserved, natural habitatand has become a major weed problem in Kruger National Park (KNP), South Africa.
2. The main objectives in the control of O. stricta are to reduce the density of the weed and to curb long-range dispersal of seeds by preventing young plants from reaching the size (28 cladodes) at which they start to produce fruits.
3. Herbicides have failed to provide satisfactory control of O. stricta because the weed infestations are replenished from seeds in the soil and from small plants that are overlooked during spraying.
4. A phycitid moth, Cactoblastis cactorum , was released in KNP during 1988 in an attempt to control O. stricta biologically.
5. Population counts of the biological control agent and of the weed over a 5-year period showed that, even though C. cactorum has not provided complete control of O. stricta in KNP, the moderate levels of larval damage have stunted the growth of O. stricta and have considerably extended the time that the young plants take to reach sexual maturity.
6. Comparisons of modelled (i.e. with no C. cactorum ) and actual populations of O. stricta showed that C. cactorum is making a substantial contribution to the control of O. stricta in residual infestations of the weed that have been treated with herbicides.
7. The need for long-term evaluation studies in biological weed control is demon strated by the development of an integrated management programme for effective control of O. stricta .  相似文献   

13.
The Johnson-grass (Sorghum halepense /L./Pers) is a perennial monocotyledon, its gen centre is in the Near East. Botanically this weed belongs to the monocotyledone class, Poaceae (Gromineae) family and within this, together with the maize to the Andropogonoideaei subfamily. At the time of the First National Weed Survey (1947-1953) it has not been found in Hungary. In the periods of the 2nd (1969-1971), 3rd (1987-1988) and 4th Survey it occupied the 94th, 18th and 10th place of importance, respectively. Because of its rapid multiplication and spreading after the second weed survey (1969-1971) and because of its very complicated and difficult control, the Plant Protection Division of our Ministry of Agriculture ranged it in 1974 into the category of "Dangerous weed". Johnson grass is the 6th most important weed in the world. A small plot field trial was carried out in Szabadszentkirtly (12th May 2006) in maize. The effect of pre- and post emergent herbicides was investigated against Johnson grass germinating from seed and sprouting from rhizome. The treatments were done in 4 repeats with Stomp 330 EC, Dual Gold 960 EC, Merlin WG, Wing EC, Guardian Max and Monsoon herbicides. The number of weeds germinating after spraying and the number of damaged weeds were counted and compared to the control plots 10 days after the treatments and then weekly. Parallel to the field trial, a "soil culture in pots" trial in glasshouse was also carried out in which the effect of the above mentioned herbicides was investigated against Johnson grass germinating from seed. During on experiments all the herbicides showed an excellent herbicide activity until the 2nd week of treatment, although the precipitation of the second week was only 8.4 mm. Under the given experimental conditions the best herbicide effect until the 4th week, in both experimental phases were given by Merlin WG.  相似文献   

14.
Summary Algal techniques were used to study the soil factors affecting the toxicity of herbicides. It was found that the organic matter adsorbed 18 times more herbicide than clay. The inherent phytotoxicity of different herbicides was tested by these methods and the results obtained compared favourably to those of higher plants. The order of toxicity as tested by algae was: diuron >neburon>monuron>atrazine>simazine>atratone. The prediction of application rates of diuron and simazine by algal methods was tested in the field with wheat as cereal crop. The data obtained testified that the predictions were correct and better than the commercial recommendation. Good chemical control of weeds was achieved by herbicide at the early stage of crop growth. At later stages of crop development the toxicity of the chemical was reduced to insignificance and the crop plants were then capable to compete successfully against the emerging weeds. Thus a biological weed control was obtained. Such combined chemical-biological weed control technique should be regarded as the most desirable practice in agriculture.  相似文献   

15.
Weeds are the most productive limiting factor, especially in organic farming systems where the uses of synthetic herbicides are not allowed due to their negative impacts. Hence, synthetic herbicides need to be replaced with biological herbicides for weed management. Thus, the present study was designed to evaluate the herbicidal activity of conidia suspensions from Aspergillus niger, Trichoderma asperlium, Trichoderma atroviride, Trichoderma hamatum, Trichoderma harzanium, Trichoderma longibrachatum and Trichoderma viride against Bidens pilosa weed via a series of laboratory and lath-house conditions that laid out in a CRD and RCBD, respectively, with three replications for each bioassay. The results revealed that all fungi, except T. longibrachatum, had significantly reduced seed germination as well as early growth of the target weed compared to the untreated control. The inhibitory effects were measured to be varied among the types of conidia suspensions of fungal species and their level of concentration. The highest rate of inhibition was observed for conidia suspension from A. niger which suppressed with the maximum seed germination inhibitory level (65%) over control. Likewise, the plumule and radicle growth length of the target weed also significantly inhibited by the tested fungi (ranging from 10 to 85% and 34 to 97%) compared to the control, respectively. Based on their efficacy in the laboratory bioassay, the herbicidal potential of selected fungi was further evaluated in pot experiments. In contrarily to laboratory observations, the effect of different fungal conidia suspensions on various growth parameters of the targeted weed was insignificant in the lath-house experiments. In conclusion, the application of A. niger displayed some potential green light to be investigated as a biocontrol agent with promising retarding in the germination and early growth of B. pilosa. Hence, we recommend further investigation of those fungi under field conditions on different coffee weed species.  相似文献   

16.
Wheat is widely grown in Turkey in the winter season, generally and weeds have been problem in production. Changes in agricultural practices such as increasing mechanization, changing cropping systems and widely use of herbicides and fertilizers has been causing some changes in weed flora in wheat fields from past to present. A contemporary weed survey was done in 2014 in the wheat fields of ?anl?urfa province, which dominate the production of Southeastern region and results were compared with a former survey done in 1967 in the same region. As a result of the comparison, flora has been notably changed; the number of weed species declined from 221 to 71 which means more than threefold diversity loss. In addition, species common over 50% of fields declined dramatically and some foremost species in the past were not recorded contemporary studies whereas some are recorded later. General density of weeds slightly increased in time with a volunteer crop (lentil) in 2014, however, without volunteer crop, the density also declined by about half. Similarly, the density and frequency of dominant species decreased markedly from past to present except some exceptions. The most important reasons for this change are increased use of herbicides and the change of the regional alternation system. It should be noted that biodiversity loss is lower than comparing to the developed world and there is a chance to conserve this through employing sustainable methods. Furthermore, problems related to weed identification were discussed using data from these surveys.  相似文献   

17.
Due to increased emphasis on long-term management of weed populationsin cropping systems with a reduced reliance on herbicides, theproduction of seeds by weeds that emerge after the criticalperiod for weed control is increasingly important. It was hypothesizedthat increased soil cover and light interception by a crop canopywould shorten the critical period for weed control and reducegrowth and fecundity of late-emerging weeds. This hypothesiswas tested in a series of field and glasshouse experiments inwhich competition for light was manipulated. Senecio vulgaris,an important weed in vegetable production systems, was chosenas the target plant, and canopies of pure and mixed stands ofleek and celery were used to provide shade. The time courseof light interception differed among the crop canopies. Increasingcompetition for light caused morphological changes to S. vulgaris,including a vertical shift in leaf area distribution. Increasedshading reduced biomass, capitula:shoot ratio and seed productionof S. vulgaris. However, the viability of seeds produced bythe shaded weed plants was not affected. Results indicate thatintercropping can increase light interception in a weakly competitivecrop such as leek and can contribute to weed suppression ina long-term strategy for weed management. Copyright 2001 Annalsof Botany Company Competition for light, late-emerging weeds, critical period, Apium graveolens L., celery, Allium porrum L., leek, Senecio vulgaris L., common groundsel, seed production, weed management, intercropping  相似文献   

18.
With the potential advent of genetically modified herbicide-resistant (GMHR) crops in the European Union, changes in patterns of herbicide use are predicted. Broad-spectrum, non-selective herbicides used with GMHR crops are expected to substitute for a set of currently used herbicides, which might alter the agro-environmental footprint from crop production. To test this hypothesis, the environmental impact of various herbicide regimes currently used with non-GMHR maize in Belgium was calculated and compared with that of possible herbicide regimes applied in GMHR maize. Impacts on human health and the environment were calculated through the pesticide occupational and environmental risk (POCER) indicator. Results showed that the environmental impact of herbicide regimes solely relying on the active ingredients glyphosate (GLY) or glufosinate-ammonium (GLU) is lower than that of herbicide regimes applied in non-GMHR maize. Due to the lower potential of GLY and GLU to contaminate ground water and their lower acute toxicity to aquatic organisms, the POCER exceedence factor values for the environment were reduced approximately by a sixth when GLY or GLU is used alone. However, the environmental impact of novel herbicide regimes tested may be underestimated due to the assumption that active ingredients used with GMHR maize would be used alone. Data retrieved from literature suggest that weed control efficacy is increased and resistance development delayed when GLY or GLU is used together with other herbicides in the GMHR system. Due to the partial instead of complete replacement of currently used herbicide regimes, the beneficial environmental impact of novel herbicide regimes might sometimes be reduced or counterbalanced. Despite the high weed control efficacy provided by the biotechnology-based weed management strategy, neither indirect harmful effects on farmland biodiversity through losses in food resources and shelter, nor shifts in weed communities have been demonstrated in GMHR maize yet. However, with the increasing adoption rate of GMHR maize and their associated novel herbicide regimes, this situation is expected to change in the short-term. An erratum to this article can be found at  相似文献   

19.
20.
This study was carried out in a demonstrated field in El-Sharkia Governorate, Egypt, during the winter of season 2020 to evaluate the leverage of four post-emergence herbicides i.e., tribenuron-methyl, clodinafop- propargyl, pyroxsulam and pinoxaden compared to control on total protein and amino acid contents in three wheat cultivars (Shandwel 1, Giza 171, and Sakha 95). Generally, the use of foliar herbicides led to a significant decrease in essential, non-essential amino acids and protein contents. However, tribenuran-methyl herbicide signifcantly increased the levels of proline, glycine, arginine, and histidine, but cystine and threonine not affected as compared to control. On the other hand, foliar herbicide application was significantly increased physiological , biochemical parameters and yield of Shandweel cultivar as compared to the other varieties. The physiological and biochemical models of dual-herbicide-tolerant wheat cultivars add to our understanding of the crop. In recent agricultural systems, herbicide tolerant plants are important for long-term weed management. Therefore, the study recommended the safely usage of Tribenuran-methyl as foliar herbicide in weed managment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号