首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding acetyl-coenzyme A carboxylase from Brassica napus.   总被引:7,自引:5,他引:2       下载免费PDF全文
W Schulte  J Schell    R Tpfer 《Plant physiology》1994,106(2):793-794
  相似文献   

2.
3.
Primary cultures of adult rat hepatocytes were utilized to ascertain the impact of free fatty acids on the insulin plus dexamethasone induction of acetyl-CoA carboxylase. Lipogenesis was induced threefold by the combination of insulin and dexamethasone. The rise in fatty acid synthesis was accompanied by a comparable increase in the rate-determining enzyme acetyl-CoA carboxylase. Dexamethasone was required for the insulin induction of acetyl-CoA carboxylase. Under the permissive action of glucocorticoid, 10(-7) M insulin maximally increased enzyme activity. Half-maximum stimulation occurred with 5 X 10(-9) M insulin. Media containing 0.2 mM palmitate, oleate, linoleate, arachidonate, or docosahexaenoate significantly suppressed the hormonal induction of acetyl-CoA carboxylase. The extent of suppression was only 30-35% and did not vary with chain length or degree of unsaturation. Carboxylase activity was not suppressed further by raising the concentration of linoleate to 0.5 mM; however, 0.5 mM palmitate depleted the cells of ATP and abolished acetyl-CoA carboxylase activity. Therefore, based upon the inhibitory characteristics of the various fatty acids and the lack of a concentration dependency of the fatty acid inhibition, it would appear that fatty acid inhibition of the induction of acetyl-CoA carboxylase activity may not be a direct, physiological regulatory mechanism.  相似文献   

4.
Insulin and the regulation of adipose-tissue acetyl-coenzyme A carboxylase   总被引:24,自引:21,他引:3  
Rat epididymal fat-pads were incubated for 30min with glucose (2mg/ml) in the presence or absence of insulin. A twofold or greater increase in acetyl-CoA carboxylase activity was observed in extracts from insulin-treated tissue provided that assays were performed rapidly after extraction. This effect of insulin was evident whether or not extracts were prepared with albumin, and was not noticeably diminished by the presence of citrate or albumin or both in the assay. Incubation of extracts before assay led to activation of acetyl-CoA carboxylase and a marked diminution in the insulin effect. The enzyme in extracts was very sensitive to reversible inhibition by palmitoyl-CoA even in the presence of albumin (10mg/ml); inhibition persisted on dilution of enzyme and inhibitor. It is suggested that the observed activation of acetyl-CoA carboxylase by insulin may reflect changes in enzyme activity in the fat-cell resulting from the reduction of long-chain fatty-acyl-CoA that occurs in the presence of insulin. Activation of the enzyme with loss of the insulin effect on incubation of the extracts may be due to the slow dissociation of long-chain fatty acyl-CoA from the enzyme.  相似文献   

5.
Acetyl-CoA carboxylase of animal tissues is known to be dependent on citrate for its activity. The observation that dephosphorylation abolishes its citrate dependence (Thampy, K. G., and Wakil, S. J. (1985) J. Biol. Chem. 260, 6318-6323) suggested that the citrate-independent form might exist in vivo. We have purified such a form from rapidly freeze-clamped livers of rats. Sodium dodecyl sulfate gel electrophoresis of the enzyme gave one protein band (Mr 250,000). The preparation has high specific activity (3.5 units/mg in the absence of citrate) and low phosphate content (5.0 mol of Pi/mol of subunit). The enzyme isolated from unfrozen liver or liver kept in ice-cold sucrose solution for 10 min and then freeze-clamped has low activity (0.3 unit/mg) and high phosphate content (7-8 mol of Pi/mol of subunit). Citrate activated such preparations with half-maximal activation at greater than 1.6 mM, well above physiological range. The low activity may be due to its high phosphate content because dephosphorylation by [acetyl-CoA carboxylase]-phosphatase 2 activates the enzyme and reduces its dependence on citrate. Since freeze-clamping the liver yields enzyme with lower phosphate content and higher activity, it is suggested that the carboxylase undergoes rapid phosphorylation and consequent inactivation after the excision of the liver. The carboxylase is made up of two polymeric forms of Mr greater than or equal to 10 million and 2 million based on gel filtration on Superose 6. The former, which predominates in preparations from freeze-clamped liver, has higher activity and lower phosphate content (5.3 units/mg and 4.0 mol of Pi/mol of subunit, respectively) than the latter (2.0 units/mg and 6.0 mol of Pi/mol of subunit, respectively). The latter, which predominates in preparations from unfrozen liver, is converted to the active polymer (Mr greater than or equal to 10 million) by dephosphorylation. Thus, the two polymeric forms are interconvertible by phosphorylation/dephosphorylation and may be important in the physiological regulation of acetyl-CoA carboxylase.  相似文献   

6.
A maize acetyl-coenzyme A carboxylase cDNA sequence.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

7.
Tumor necrosis factor (TNF) is secreted by macrophages in response to various stimuli and blocks lipid accumulation during the conversion of preadipocytes to adipocytes in culture. In the present report, we investigate the effect of recombinant TNF on the expression of acetyl-coenzyme-A (CoA) carboxylase, the rate-limiting enzyme for long-chain fatty acid biosynthesis. We used a preadipocyte cell line, 30A-5, derived from 10T1/2 mouse fibroblasts after treatment with 5-azacytidine. Treatment of the preadipocyte cell line with dexamethasone and insulin triggers the conversion of these cells to mature adipocytes as evidenced by the accumulation of lipid. The mRNA and enzyme levels of acetyl-CoA carboxylase as well as the enzyme activity increase markedly during the conversion process. TNF prevents the conversion of preadipocytes to adipocytes with a concomitant inhibition in the accumulation of acetyl-CoA carboxylase mRNA and decrease in enzyme activity. This observed reduction in acetyl-CoA carboxylase mRNA levels is reversible upon removal of TNF. Acetyl-CoA carboxylase mRNA levels and enzyme activity also decrease when fully differentiated adipocytes are exposed to TNF but to a much lesser extent. These results suggest that TNF affects de novo lipid synthesis in part by altering the mRNA levels of acetyl-CoA carboxylase.  相似文献   

8.
9.
Acetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in the synthesis of long-chain fatty acids. Since aging influences adiposity, we studied the activity of ACC and its mRNA content in livers of 4-, 12-, and 24-month-old male Fischer 344 rats. The mean (+/- SEM) activity of ACC (mU/mg protein) in liver homogenates from 4-month-old rats was 1.01 +/- 0.14. There was an 80% increase in activity (1.83 +/- 0.27) in 12-month-old rats (P < 0.01). However, there was significantly less activity (0.46 +/- 0.06) in livers of 24-month-old rats (P < 0.001). The total activity of ACC (per g liver) followed the same trend. The enzyme from all age groups was purified by avidin-affinity chromatography. The purified preparation migrated as a major protein band (M(r) 262,000) on sodium dodecyl sulfate (SDS)-polyacrylamide gels. The specific activity of the purified preparation was 1.5, 1.8, and 1.8 U/mg for 4-, 12-, and 24-month-old rats, respectively. The alkali-labile phosphate content was 5.66 +/- 0.17, 5.64 +/- 0.21, and 6.21 +/- 0.35 mols P(i)/mole subunit for 4-, 12-, and 24-month-old rats, respectively. These age-related differences were not significant. The hepatic ACC mRNA measured by ribonuclease protection assay when corrected for G3PDH mRNA was significantly reduced in 24-month-old rats (0.24 +/- 0.03) compared with 12-month-old (0.58 +/- 0.04) or 4-month-old rats (0.43 +/- 0.007) P < 0.01. In summary: (i) Aging in rats is associated with significant changes in ACC activity; (ii) the purified ACC preparations from the three age groups had similar specific activity and similar phosphate content; and (iii) the changes in ACC mRNA content of the liver paralleled the changes in total enzyme activity when 12-month-old rats were compared with 24-month-old rats whereas the increase in ACC activity in 12-month-old rats compared with 4-month-old rats could not be ascribed to changes in hepatic mRNA levels. These results indicate that the age-related changes in hepatic ACC occur at a post-translational level during early years of aging and at a pretranslational level at late states of senescence. These changes may contribute to the age-related alterations in body adiposity.  相似文献   

10.
Molecular cloning of cDNA for acetyl-coenzyme A carboxylase   总被引:4,自引:0,他引:4  
Poly(A)+ RNA from lactating rat mammary glands was size-fractionated to enrich the relative amount of acetyl-CoA carboxylase mRNA. The enriched mRNA was used to generate a lambda gt11 cDNA library. Initial screening with polyclonal antiserum to acetyl-CoA carboxylase produced three positive clones. Western blot analysis revealed that two clones, lambda DH3 and lambda KH18, synthesized 165,000-dalton proteins that were recognized by antibodies to acetyl-CoA carboxylase and beta-galactosidase, indicating that acetyl-CoA carboxylase/beta-galactosidase fusion proteins were produced. Competition experiments with purified acetyl-CoA carboxylase further demonstrated that the fusion proteins contained acetyl-CoA carboxylase protein segments. Antibodies which are specific to the fusion proteins were isolated. These antibodies cross-reacted only with acetyl-CoA carboxylase in a preparation of partially purified acetyl-CoA carboxylase. In addition, the antibodies immunoprecipitated enzyme activity from a crude liver homogenate. Northern blot analysis of total RNA revealed two RNA species: one 10 kilobases and the other 3.0 kilobases. The levels of these RNA species increased when starved animals were fed a fat-free diet, indicating that they are coordinately regulated.  相似文献   

11.
Phosphorylation and inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase in the presence of ATP and Mg2+ requires coenzyme A. Coenzyme A did not enhance the phosphorylation of alternative substrates of the carboxylase kinase such as protamine or histones. Analogs of coenzyme A were also effective in stimulating the inactivation of carboxylase. The KA of CoA for stimulated carboxylase inactivation was 25 microM. The presence of coenzyme A did not alter the Km of the carboxylase kinase for its substrates, ATP and acetyl-CoA carboxylase. Fluorescence binding studies showed that CoA binds to carboxylase but not to the kinase. The KD of CoA binding to carboxylase is 27 microM. These results indicate that coenzyme A, acting on acetyl-CoA carboxylase, may play an important role in the regulation of the covalent modification mechanism for acetyl-CoA carboxylase.  相似文献   

12.
13.
Incorporation of [14C]acetate or [14C]pyruvate into fatty acids in isolated corn seedling chloroplasts was inhibited 90% or greater by 10 microM sethoxydim or 1 microM haloxyfop. At these concentrations, neither sethoxydim nor haloxyfop inhibited [14C]acetate incorporation into fatty acids in isolated pea chloroplasts. Sethoxydim (10 microM) and haloxyfop (1 microM) did not inhibit incorporation of [14C]malonyl-CoA into fatty acids in cell free extracts from corn tissue cultures. Acetyl coenzyme A carboxylase (EC 6.4.1.2) from corn seedling chloroplasts was inhibited by both sethoxydim and haloxyfop, with I50 values of 2.9 and 0.5 microM, respectively. This enzyme in pea was not inhibited by 10 microM sethoxydim or 1 microM haloxyfop.  相似文献   

14.
The effect of vasopressin on the short-term regulation of fatty acid synthesis was studied in isolated hepatocytes from rats fed ad libitum. Vasopressin stimulates fatty acid synthesis by 30-110%. This increase is comparable with that obtained with insulin. Angiotensin also stimulates fatty acid synthesis, whereas phenylephrine does not. The dose-response curve for vasopressin-stimulated lipogenesis is similar to the dose-response curve for glycogenolysis and release of lactate plus pyruvate. Vasopression also stimulates acetyl-CoA carboxylase activity in a dose-dependent manner. Vasopressin does not relieve glucagon-inhibited lipogenesis, whereas insulin does. The action of vasopressin on hepatic lipogenesis is decreased, but not suppressed, in Ca2+-depleted hepatocytes. The results suggest that vasopressin acts on lipogenesis by increasing availability of lipogenic substrate (lactate + pyruvate) and by activating acetyl-CoA carboxylase.  相似文献   

15.
We report the molecular cloning and DNA sequence of the gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. The biotin carboxylase gene encodes a protein of 449 residues that is strikingly similar to amino-terminal segments of two biotin-dependent carboxylase proteins, yeast pyruvate carboxylase and the alpha-subunit of rat propionyl-CoA carboxylase. The deduced biotin carboxylase sequence contains a consensus ATP binding site and a cysteine-containing sequence preserved in all sequenced bicarbonate-dependent biotin carboxylases that may play a key catalytic role. The gene encoding the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase is located upstream of the biotin carboxylase gene and the two genes are cotranscribed. As previously reported by others, the BCCP sequence encoded a protein of 16,688 molecular mass. However, this value is much smaller than that (22,500 daltons) obtained by analysis of the protein. Amino-terminal amino acid sequencing of the purified BCCP protein confirmed the deduced amino acid sequence indicating that BCCP is a protein of atypical physical properties. Northern and primer extension analyses demonstrate that BCCP and biotin carboxylase are transcribed as a single mRNA species that contains an unusually long untranslated leader preceding the BCCP gene. We have also determined the mutational alteration in a previously isolated acetyl-CoA carboxylase (fabE) mutant and show the lesion maps within the BCCP gene and results in a BCCP species defective in acceptance of biotin. Translational fusions of the carboxyl-terminal 110 or 84 (but not 76) amino acids of BCCP to beta-galactosidase resulted in biotinated beta-galactosidase molecules and production of one such fusion was shown to result in derepression of the biotin biosynthetic operon.  相似文献   

16.
17.
18.
Tissue distribution of acetyl-coenzyme a carboxylase in leaves   总被引:5,自引:4,他引:1       下载免费PDF全文
Acetyl-CoA carboxylase [acetyl-CoA—carbon dioxide ligase (ADP forming), EC 6.4.1.2] is a biotin-containing enzyme catalyzing the formation of malonyl-CoA. The tissue distribution of this enzyme was determined for leaves of C3- and C4-plants. The mesophyll tissues of the C3-plants Pisum sativum and Allium porrum contained 90% of the leaf acetyl-CoA carboxylase activity, with the epidermal tissues containing the remainder. Western blotting of proteins fractionated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, using 125I-streptavidin as a probe, revealed biotinyl proteins of molecular weights 62,000, 51,000, and 32,000 in P. sativum and 62,000, 34,000, and 32,000 in A. porrum.

In the C4-plant sorghum, epidermal protoplasts, mesophyll protoplasts and strands of bundle sheath cells contained 35, 47, and 17%, respectively, of the total leaf acetyl-CoA carboxylase activity. In Zea mays leaves the respective figures were 10% for epidermal protoplasts, 56% for mesophyll protoplasts, and 32% for bundle sheath strands. Biotinyl proteins of molecular weights 62,000 and 51,000 were identified in leaves of sorghum and Z. mays.

The results are discussed with respect to each tissue's requirements for malonyl-CoA for various metabolic pathways.

  相似文献   

19.
The process leading to the rise of acetyl-CoA carboxylase activity in rat mammary tissue after the onset of lactation was investigated. The kinetics of change in enzyme activity and enzyme immunotitratable with antibody against avian liver acetyl-CoA carboxylase were determined during the course of lactogenic differentiation. The antibody inactivates and specifically precipitates acetyl-CoA carboxylase from rat mammary tissue as well as that from chicken liver cytosol. Characterization of the immunoprecipitate of the mammary tissue carboxylase by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis reveals a single biotin-containing polypeptide of about 230000mol.wt. This molecular weight is approximately twice that reported for the avian liver enzyme. However, chicken liver cytosol prepared in the presence of trypsin inhibitor and subjected to immunoprecipitation gives rise to a biotin-containing subunit of 230000mol.wt. as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; omission of proteinase inhibitor leads to a subunit(s) approximately one-half this size. Throughout gestation both carboxylase activity and amounts of immunotitratable enzyme remained low; however, after parturition both parameters rose concomitantly to values 30-40 times the initial values. Therefore the elevated concentration of acetyl-CoA carboxylase appears to result from an increased rate of synthesis of enzyme relative to degradation rather than to activation of a pre-existing form of the enzyme.  相似文献   

20.
Multi‐subunit acetyl‐coenzyme A carboxylase (MS‐ACCase; EC 6.4.1.2) isolated from soybean chloroplasts is a labile enzyme that loses activity during purification. We found that incubating the chloroplast stromal fraction under anaerobic conditions or in the presence of 5 mM FeSO4 stimulated ACCase (acetyl‐CoA→malonyl‐CoA) and carboxyltransferase (malonyl‐CoA→acetyl‐CoA) activity. Fe‐stimulation of activity was associated with 59Fe binding to a stromal protein fraction. ACCase and carboxyltransferase activities measured in the stromal protein fraction containing bound 59Fe were 2‐fold and 6‐fold greater, respectively, than the control (stromal fraction not pretreated with FeSO4). Superose 6 gel filtration chromatography indicated 59Fe comigrated with stromal protein of approximately 180 kDa that exhibited carboxyltransferase activity, but lacked ACCase activity. Anion exchange (Mono‐Q) chromatography of the Superose 6 fraction yielded a protein peak that was enriched in carboxyltransferase activity and contained protein‐bound 59Fe. Denaturing gels of the Mono‐Q fraction indicated that the 180‐kDa protein was composed of a 56‐kDa subunit that was bound by an antibody raised against a synthetic β‐carboxyltransferase (β‐CTase) peptide. Incubation of the Mono‐Q carboxyltransferase fraction with increasing concentrations of iron at a fixed substrate concentration resulted in increased initial velocities that fit well to a single rectangular three parameter hyperbola (v=vo+Vmax[FeSO4]/Km+[FeSO4]) consistent with iron functioning as a bound activator of catalysis. UV/Vis spectroscopy of the partially purified fraction before and after iron incubation yielded spectra consistent with a protein‐bound metal cluster. These results suggest that the β‐CTase subunit of MS‐ACCase in soybean chloroplasts is an iron‐containing enzyme, which may in part explain its labile nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号