首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
随着细菌耐药性问题的日益严重,人们开始寻求新型抗菌制剂。噬菌体裂解酶是一种由ds DNA噬菌体编码的水解酶,能高效特异性地裂解细菌细胞壁且不易使细菌产生耐药性。由于天然裂解酶具有宿主谱窄,不能裂解革兰阴性菌等缺点,研究者对裂解酶进行了大量的设计改造。本研究主要对提高噬菌体裂解酶抗菌活性的研究进展进行综述。  相似文献   

2.
噬菌体裂解酶是噬菌体产生的细胞壁水解酶,通过水解宿主菌细胞壁使子代噬菌体释放,在体外能高效且特异性地杀死细菌。本研究旨在克隆和表达链球菌噬菌体裂解酶PlyC,并测定其生物学活性。利用PCR方法扩增PlyC的2条肽链PlyCA和PlyCB,构建表达载体pET-32a(+)-PlyCA和pET-32a(+)-PlyCB,分别转化至大肠杆菌BL21(DE3)中,以0.7 mmol/L IPTG在30 oC诱导7 h实现了高效表达,SDS-PAGE分析表明PlyCA和PlyCB表达量均可达菌体总蛋白的30%以上。采用Ni2+-NTA亲和层析法纯化目的蛋白,其纯度大于95%。用透析复性方法得到目的产物重组链球菌噬菌体裂解酶PlyC,以浊度法和平板计数法检测其体外抗菌效果,扫描电子显微镜观察裂解酶作用前后细菌细胞形态变化。结果表明重组PlyC能特异性裂解化脓性链球菌(A组β-溶血性链球菌),以4μg/mL浓度作用于OD600为0.56的菌液60 min后杀菌率达99.6%,扫描电镜观察结果显示该酶作用于菌体后,链球菌细胞裂解,呈碎片状态。本研究为开发一种新型、高效的链球菌感染疾病治疗药物打下了基础。  相似文献   

3.
噬菌体裂解酶——现状与未来   总被引:1,自引:0,他引:1  
方圆子  王琰  孙建和 《微生物学通报》2009,36(12):1888-1893
噬菌体裂解酶是一种由DNA噬菌体基因编码的高特异性酶, 可高效消化细菌细胞壁。革兰氏阳性菌噬菌体裂解酶的结构域相似, 裂解效率高, 与抗生素具协同抗菌作用, 且不易产生耐受性菌株, 抗体等体液因子对裂解酶的裂解活性影响小, 裂解酶作为一种潜在抗感染药物具有重要的研究价值。目前已建立了多种病原菌裂解酶应用的动物模型, 在防控耐药性病原菌感染上取得重要进展。本文就噬菌体裂解酶的抗菌作用进行综述。  相似文献   

4.
【背景】副乳房链球菌(Streptococcus parauberis)是重要的水产病原菌,该病原菌已逐渐出现新的血清型及多重耐药性状,因此亟须开发出一种新的抗菌药物用于该病害的防治。研究发现,前噬菌体编码的裂解酶能够有效地杀死其宿主,具有良好的抗菌应用前景。【目的】以副乳房链球菌前噬菌体裂解酶为对象,研究其杀菌宿主谱并优化其裂解活性的条件。【方法】利用PHASTER工具对副乳房链球菌菌株KRS02083全基因组序列分析发现,其前噬菌体包含一种裂解酶的基因Sply828;通过基因克隆、表达和纯化等技术得到裂解酶Sply828蛋白;通过浊度递减实验探究裂解酶Sply828对不同细菌的杀菌活性及其最适的裂解条件。【结果】裂解酶Sply828对鱼源副乳房链球菌具有最佳的杀菌活性,并发现该酶对处于指数生长期的细菌杀菌效果最好;其最适裂解温度为28°C,最适pH为6.2;Ca2+和Mg2+对该酶的杀菌活性有促进作用,但是Zn2+、Cu2+、Fe2+、Ni2+明显抑制...  相似文献   

5.
噬菌体溶壁酶研究进展   总被引:1,自引:0,他引:1  
溶壁酶是噬菌体在感染末期表达的蛋白质,可水解细菌的细胞壁,使子代噬菌体释放出来。研究表明,溶壁酶在体外能高效地杀死细菌,同样对感染细菌的模型动物有很好的治疗作用。因此,溶壁酶是一种新型的抗菌物质,具有广阔的应用前景。溶壁酶通过水解细菌细胞壁肽聚糖上糖与肽间的酰胺键或肽内氨基酸残基间的连键,从而使细菌裂解。溶壁酶分子由结合功能域和催化功能域两部分组成,其晶体结构使之具有对细胞壁肽聚糖水解的高效性和特异性。对噬菌体溶壁酶的体内外抗菌作用、抗菌机理、晶体结构等最新研究成果及其应用前景进行了综述。  相似文献   

6.
神经氨酸酶不仅存在于流感病毒,在细菌中也有分布。细菌的神经氨酸酶可裂解宿主体内糖结合物末端的神经氨酸残基,有助于细菌实现在宿主体内的定殖、穿透和扩散,是细菌重要的毒力因子之一。链球菌是自然界广泛存在的人畜共患的病原菌,在多种链球菌中均可检测出神经氨酸酶。肺炎链球菌的神经氨酸酶研究最为透彻,该菌可产生3种神经氨酸酶(NanA,NanB,NanC),NanA不但可以发挥酶的催化作用,分解唾液酸残基,暴露细菌的黏附受体,还能不依赖酶活基团,辅助细菌感染宿主细胞;NanB催化后产物可作为细菌的碳源;NanC可辅助细菌入侵脑部。在无乳链球菌和猪链球菌中,神经氨酸酶的活性一直未得到确切的验证,可能是由于它们的荚膜均含有神经氨酸,所以其神经氨酸酶的活性逐渐在进化中丧失。另外一些链球菌,例如化脓链球菌和C、G、L群链球菌,其神经氨酸酶的底物偏好相近,均对唾液类黏蛋白的催化活性较强,利于链球菌在含唾液类黏蛋白的组织中扩散。在口腔链球菌和血链球菌中,神经氨酸酶破坏血液成分中的神经氨酸链。由此可见,神经氨酸酶的特异性催化作用与链球菌在宿主体内的定植部位密切相关。此外,随着科技的发展,对神经氨酸酶的活性检测,也由早期的硫代巴比妥法,转为现在的荧光值和吸光度的测定,更为便捷和敏感。本文旨在对链球菌的神经氨酸酶的作用机制、与毒力关系及酶活测定方法等研究进展作一综述,为从事相关研究的科学工作者提供参考。  相似文献   

7.
噬菌体及其裂解酶对细菌生物被膜作用的研究进展   总被引:2,自引:0,他引:2  
细菌形成的生物被膜,可保护细菌不易被抗生素杀死,这给临床上相应疾病的治疗及医疗器械的消毒带来极大困难。研究表明,噬菌体及其裂解酶对生物被膜有降解作用。噬菌体能清除细菌在有生物活性或无生物活性的介质表面形成的生物被膜。此外,噬菌体裂解酶比如LySMP、肽酶CHAPk、细胞壁溶解酶CWHs等能清除特定的生物被膜,这可能与裂解酶直接溶菌和裂解细菌细胞外基质有关。同时,与抗生素、钴离子、氯等物质联合使用时,噬菌体对生物被膜的清除作用会更强。本文从噬菌体、噬菌体编码的裂解酶、以及它们联合其他物质对细菌生物被膜的作用进行综述,并对其实际应用做了展望。  相似文献   

8.
果胶裂解酶包含果胶酸裂解酶(pectate lyase)和果胶酸酯裂解酶(pectin lyase)二种形式,是一类多糖裂解酶,由细菌、真菌、植物和线虫等生物产生,分布在5个多糖裂解酶家族,果胶酶在食品与饮料、纺织与洗涤、制药等工业中有广泛的应用。利用NCBI BLASTX服务器,搜索与番茄P56蛋白氨基酸序列相似且都属于多糖裂解酶家族Ⅰ的果胶裂解酶蛋白序列共28条,用DNAMAN软件分析其保守区,用CLUSTALX8.0软件进行序列比对和Bi-oEdit软件进行文件转换,进一步用PUAP4.0软件构建系统进化树。构建的MP树(phylogenetic trees)和NJ树(neighbor-joining)显示:来自植物的果胶酸裂解酶、真菌的果胶酸酯裂解酶、细菌的果胶酸裂解酶分别可聚为一个独立的类群;相对于细菌果胶酸裂解酶和真菌果胶酸酯裂解酶而言,构巢曲霉(Aspergillus nidulans)的果胶酸裂解酶A和植物的果胶酸裂解酶之间有较近的亲缘关系;细菌Pseudomonas syringae的果胶酸酯裂解酶和真菌的果胶酸酯裂解酶之间的亲缘关系较近。  相似文献   

9.
【目的】噬菌体具有防控耐药性病原菌的抗菌应用潜力,但是有些病原菌噬菌体的获得非常困难,研究发现大多数病原菌存在前噬菌体(prophage),且由前噬菌体编码的裂解酶(endolysin)具有良好的抗菌应用前景,本研究将挖掘猪链球菌前噬菌体及其编码的裂解酶。【方法】通过对GenBank中登录的数株猪链球菌前噬菌体裂解酶的基因信息分析,挖掘出一株猪链球菌7型菌株前噬菌体编码的裂解酶,研究其生物学活性。以猪链球菌7型菌株7917的基因组为模板,采用PCR技术扩增获得裂解酶基因ly7917,将其克隆至质粒pET28a(+)并转化大肠杆菌DH5α细胞,挑选基因序列正确的阳性克隆、抽提质粒、转化表达菌株大肠杆菌BL21,经IPTG诱导可高效表达裂解酶Ly7917。【结果】平板裂解试验结果显示Ly7917具有高效裂菌活性,能够裂解猪链球菌2型高致病力菌株HA9801;浊度递减试验结果显示该裂解酶能够高效裂解猪链球菌2型、7型、9型和马链球菌兽疫亚种参考株、金黄色葡萄球菌(包括耐甲氧西林金黄色葡萄球菌)等多种革兰氏阳性菌。【结论】基于前噬菌体挖掘的裂解酶Ly7917,具有高效广谱裂菌活性,为临床上利用裂解酶治疗耐药菌的混合感染提供了可能。  相似文献   

10.
壳寡聚糖对变形链球菌乳酸脱氢酶及γ谷丙转氨酶的影响   总被引:1,自引:0,他引:1  
目的 研究壳寡聚糖对变形链球菌乳酸脱氢酶(LDH)及γ谷丙转氨酶(γ-GT)的影响。方法 将变形链球菌接种在含壳寡聚糖的培养基中,测定培养上清液中乳酸脱氢酶及γ谷丙转氨酶等细胞内酶的含量。结果 菌液上清中的LDH和γ-GT2种细胞内酶含量显著高于空白对照组。表明接种在含壳寡聚糖培养基中的细菌出现了明显的细胞内酶溢出,并与浓度相关。结论 壳寡聚糖对细菌的细胞壁有破坏作用,可能是壳寡聚糖具有防龋功能的原因。  相似文献   

11.
Streptococcal pathogens contribute to a wide variety of human and livestock diseases. The routine use of antibiotics to battle these pathogens has produced a new class of multidrug-resistant streptococci. Thus, there is a need for new antimicrobials. Bacteriophage endolysins (peptidoglycan hydrolases) comprise one group of new antimicrobials that are reportedly refractory to resistance development. The LambdaSa2 prophage endolysin gene was recently isolated from a Group B streptococcal genome, expressed on an Escherichia coli plasmid, and shown by homology screening and biochemical analysis to harbor an amidase-5 (endopeptidase) domain, an amidase-4 (glycosidase) domain, and two Cpl-7 cell wall-binding domains. In this study, turbidity reduction and plate lysis assays indicate that this hydrolase shows strong lytic activity toward Streptococcus pyogenes, Streptococcus dysgalactiae, Streptococcus uberis, Streptococcus equi, GES, and GGS. Deletion analysis indicates that the N-terminal endopeptidase domain with both Cpl-7 domains can lyse with a higher specific activity than the full-length protein (against some strains). This dual Cpl-7 domain truncated version also shows weak lytic activity against methicillin-resistant Staphylococcus aureus (MRSA) and the coagulase negative staphylococci, Staphylococcus xylosus. The truncated constructs harboring the glycosidase domain are virtually inactive, showing only minimal activity on plate lysis assays.  相似文献   

12.
Staphylococcus aureus is a notorious pathogen highly successful at developing resistance to virtually all antibiotics to which it is exposed. Staphylococcal phage 2638A endolysin is a peptidoglycan hydrolase that is lytic for S. aureus when exposed externally, making it a new candidate antimicrobial. It shares a common protein organization with more than 40 other reported staphylococcal peptidoglycan hydrolases. There is an N-terminal M23 peptidase domain, a mid-protein amidase 2 domain (N-acetylmuramoyl-L-alanine amidase), and a C-terminal SH3b cell wall-binding domain. It is the first phage endolysin reported with a secondary translational start site in the inter-lytic-domain region between the peptidase and amidase domains. Deletion analysis indicates that the amidase domain confers most of the lytic activity and requires the full SH3b domain for maximal activity. Although it is common for one domain to demonstrate a dominant activity over the other, the 2638A endolysin is the first in this class of proteins to have a high-activity amidase domain (dominant over the N-terminal peptidase domain). The high activity amidase domain is an important finding in the quest for high-activity staphylolytic domains targeting novel peptidoglycan bonds.  相似文献   

13.
Bacteriophage SPN1S infects the pathogenic Gram‐negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane‐permeabilized Gram‐negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram‐negative bacteria background, the α‐helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane‐permeabilized Escherichia coli. The three‐helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane‐permeabilized E. coli and was therefore proposed as the peptidoglycan‐binding domain. These structural and functional features suggest that endolysin from a Gram‐negative bacterial background has peptidoglycan‐binding activity and performs glycoside hydrolase activity through the catalytic dyad.  相似文献   

14.
Use of bacteriophages as biocontrol agents is a promising tool for controlling pathogenic bacteria including antibiotic-resistant bacteria. Not only bacteriophages but also endolysins, the peptidoglycan hydrolyzing enzymes encoded by bacteriophages, have high potential for applications as biocontrol agents against food-borne pathogens. In this study, a putative endolysin gene was identified in the genome of the bacteriophage BPS13, which infects Bacillus cereus. In silico analysis of this endolysin, designated LysBPS13, showed that it consists of an N-terminal catalytic domain (PGRP domain) and a C-terminal cell wall binding domain (SH3_5 domain). Further characterization of the purified LysBPS13 revealed that this endolysin is an N-acetylmuramyl-l-alanine amidase, the activity of which was not influenced by addition of EDTA. In addition, LysBPS13 demonstrated remarkable thermostability in the presence of glycerol, and it retained its lytic activity even after incubation at 100 °C for 30 min. Taken together, these results indicate that LysBPS13 can be considered a favorable candidate for a new antimicrobial agent to control B. cereus.  相似文献   

15.
Endolysin CD27L causes cell lysis of the pathogen Clostridium difficile, a major cause of nosocomial infection. We report a structural and functional analysis of the catalytic activity of CD27L against C. difficile and other bacterial strains. We show that truncation of the endolysin to the N-terminal domain, CD27L1-179, gave an increased lytic activity against cells of C. difficile, while the C-terminal region, CD27L180-270, failed to produce lysis. CD27L1-179 also has increased activity against other bacterial species that are targeted by the full-length protein and in addition was able to lyse some CD27L-insensitive strains. However, CD27L1-179 retained a measure of specificity, failing to lyse a wide range of bacteria. The use of green fluorescent protein (GFP)-labeled proteins demonstrated that both CD27L and CD27L1-179 bound to C. difficile cell walls. The crystal structure of CD27L1-179 confirms that the enzyme is a zinc-dependent N-acetylmuramoyl-l-alanine amidase. A structure-based sequence analysis allowed us to identify four catalytic residues, a proton relay cascade, and a substrate binding pocket. A BLAST search shows that the closest-related amidases almost exclusively target Clostridia. This implied that the catalytic domain alone contained features that target a specific bacterial species. To test this hypothesis, we modified Leu 98 to a Trp residue which is found in an endolysin from a bacteriophage of Listeria monocytogenes (PlyPSA). This mutation in CD27L resulted in an increased activity against selected serotypes of L. monocytogenes, demonstrating the potential to tune the species specificity of the catalytic domain of an endolysin.  相似文献   

16.
Lytic bacteriophage ATCC 8074-B1 produces large plaques on its host Clostridium sporogenes. Sequencing of the 47,595-bp genome allowed the identification of 82 putative open reading frames, including those encoding proteins for head and tail morphogenesis and lysis. However, sequences commonly associated with lysogeny were absent. ORF 22 encodes an endolysin, CS74L, that shows homology to N-acetylmuramoyl-L-alanine amidases, and when expressed in Escherichia coli, the protein causes effective lysis of C. sporogenes cells when added externally. CS74L was also active on Clostridium tyrobutyricum and Clostridium acetobutylicum. The catalytic domain expressed alone (CS74L(1-177)) exhibited a similar activity and the same host range as the full-length endolysin. A chimeric endolysin consisting of the CS74L catalytic domain fused to the C-terminal domain of endolysin CD27L, derived from Clostridium difficile bacteriophage ΦCD27, was produced. This chimera (CSCD) lysed C. sporogenes cells with an activity equivalent to that of the catalytic domain alone. In contrast, the CD27L C-terminal domain reduced the efficacy of the CS74L catalytic domain when tested against C. tyrobutyricum. The addition of the CD27L C-terminal domain did not enable the lysin to target C. difficile or other CD27L-sensitive bacteria.  相似文献   

17.
Staphylococcus aureus causes a wide range of suppurative infections in humans and animals. Due to its high virulence, ability to adopt various environmental conditions, and acquired multiple drug resistance, treatment of such infections has become difficult. Therefore, there is an immense need to develop alternate drug modalities to control this pathogen. In past few years, phage-encoded endolysin therapy has emerged as a new hope not only due to its ability to specifically kill the target bacteria irrespective of their antibiotic sensitivity but also because of minimum or no side effects, a problem associated with antibiotic therapy. In this article, we report purification of a broad spectrum anti-staphylococcal endolysin (P-27/HP endolysin) encoded by phage P-27/HP isolated from sewage water. On SDS-PAGE endolysin resolved in three polypeptides of molecular weights 33.5, 48.6, and 62.2 kDa. Endolysin exhibited maximum in vitro lytic activity at temperature between 35 and 40°C and pH 7.0. In vivo experiments revealed considerable (99.9%) elimination of S. aureus 27/HP from spleens of endolysin-treated mice and had saved them from death due to bacteremia caused by S. aureus 27/HP challenge infection. Thus, P-27/HP endolysin offers suitable substitute of antibiotics to control S. aureus infections.  相似文献   

18.
Phage lytic enzymes (enzybiotics) have gained attention as prospective tools to eradicate Gram-positive pathogens resistant to antibiotics. Attempts to purify the P16 endolysin of Staphylococcus aureus phage P68 were unsuccessful owing to the poor solubility of the protein. To overcome this limitation, we constructed a chimeric endolysin (P16-17) comprised of the inferred N-terminal d-alanyl-glycyl endopeptidase domain and the C-terminal cell wall targeting domain of the S. aureus phage P16 endolysin and the P17 minor coat protein, respectively. The domain swapping approach and the applied purification procedure resulted in soluble P16-17 protein, which exhibited antimicrobial activity towards S. aureus. In addition, P16-17 augmented the antimicrobial efficacy of the antibiotic gentamicin. This synergistic effect could be useful to reduce the effective dose of aminoglycoside antibiotics.  相似文献   

19.
The bacteriophage ΦCD27 is capable of lysing Clostridium difficile, a pathogenic bacterium that is a major cause for nosocomial infection. A recombinant CD27L endolysin lyses C. difficile in vitro, and represents a promising alternative as a bactericide. To better understand the lysis mechanism, we have determined the crystal structure of an autoproteolytic fragment of the CD27L endolysin. The structure covers the C-terminal domain of the endolysin, and represents a novel fold that is identified in a number of lysins that target Clostridia bacteria. The structure indicates endolysin cleavage occurs at the stem of the linker connecting the catalytic domain with the C-terminal domain. We also solved the crystal structure of the C-terminal domain of a slow cleaving mutant of the CTP1L endolysin that targets C. tyrobutyricum. Two distinct dimerization modes are observed in the crystal structures for both endolysins, despite a sequence identity of only 22% between the domains. The dimers are validated to be present for the full length protein in solution by right angle light scattering, small angle X-ray scattering and cross-linking experiments using the cross-linking amino acid p-benzoyl-L-phenylalanine (pBpa). Mutagenesis on residues contributing to the dimer interfaces indicates that there is a link between the dimerization modes and the autocleavage mechanism. We show that for the CTP1L endolysin, there is a reduction in lysis efficiency that is proportional to the cleavage efficiency. We propose a model for endolysin triggering, where the extended dimer presents the inactive state, and a switch to the side-by-side dimer triggers the cleavage of the C-terminal domain. This leads to the release of the catalytic portion of the endolysin, enabling the efficient digestion of the bacterial cell wall.  相似文献   

20.
U-21,963, a New Antibiotic: I. Discovery and Biological Activity   总被引:2,自引:1,他引:1       下载免费PDF全文
A new antibiotic, U-21,963, is produced by a new strain of Trichoderma viride. Antibiotic activity can be demonstrated against both gram-positive and gram-negative bacteria and also against a wide variety of fungi. U-21,963 is not cross-resistant with other commonly used antibiotics. U-21,963 afforded no protection against Klebsiella pneumoniae, Streptococcus pyogenes, or Staphylococcus aureus when it was injected subcutaneously into mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号